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Abstract

In this paper, the technique of conceptual modeling using the Unified Model-
ing Language (UML), is applied to the mathematical field known as Geometric
Algebra for probably the first time. Geometric Algebra is a unified language
for analyzing the full range of geometric concepts in mathematics and physics,
first developed by H. Grassmann and W. K. Clifford, and later revitalized by
D. Hestenes. A thorough introduction to the field of Geometric Algebra is given,
with accompanying conceptual models. Examples of the technique of multiple
narration, where the same model is used to tell different stories, are analyzed.
The specific problems and advantages of using UML as a visual language for a
conceptually rich mathematical communication are discussed. Using the con-
ceptual browser Conzilla, the conceptual models have been made available for
online browsing within a virtual mathematics exploratorium being developed by
the research group led by Ambjörn Naeve, mathematician and senior researcher
at CID, Center for user-oriented IT-design at the Royal Institute of Technology
in Stockholm. The specific advantages of using interactive models are discussed.

keywords: geometric algebra, UML, mathematics, concept maps, visual
modeling, Conzilla
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Chapter 1

Introduction

1.1 The Essence of Mathematical Content

Mathematics has been described as “the study of structures that the human
brain is able to perceive”1. It is not unreasonable to add “and communicate”.
Mathematics characterizes itself not only by the large body of constructs and
theorems it contains, but also by its rich language for communicating those
ideas. What can not be expressed in this language is not part of mathematics.

This language contains, as we know, a large set of symbols traditionally
used to encode mathematical content, and it contains a number of diagram-
matic techniques. But it also contains important conceptual structures that
are introduced in order to better communicate abstract and symbolic content
in a conceptually clear way. For example, to the human reader, mathematical
proofs are not merely a sequence of symbols, but a rather complicated mixture
of lemmas, constructions, analogies and so on.

Most mathematical texts rely on informal analogies, simplifications and in-
tuition to convince the reader, even in proofs and supposedly formal contexts.
The majority of mathematical texts cannot be said to be fully stringent, some-
thing which should not be taken as an indication of these texts being incorrect
or incomplete. In almost all cases, the analogies are clearly correct and the
intuition can easily be translated to formal proofs. However, from the time of
Russell and Whitehead’s Principia Mathematica it has been clear that the hu-
man brain is not capable of processing the often enormous amounts of symbols
needed to make a formally complete mathematical proof. Simplifications are a
necessary part of the language of mathematics.

Communicating mathematics thus involves communicating conceptual struc-
tures in addition to symbols. Traditionally, those conceptual structures are
communicated implicitly, using ordinary text.

This thesis discusses a new language for communicating conceptual struc-
tures in mathematics: conceptual modeling, using the Unified Modeling Lan-
guage, UML. This diagrammatic language is used to make explicit the concep-
tual structures and relations contained in the material, giving a clear overview
of the conceptual context and content.

1See [27, p. 36]
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1.2. HOW TO READ THIS THESIS 5

1.2 How to Read This Thesis

In section 2, UML and conceptual modeling is introduced and compared with
other approaches for visual modeling, such as mind-maps and concept maps.

In section 3, the field Geometric algebra is introduced. Geometric algebra
is a universal mathematical language for expressing geometry analytically. It
unifies seemingly different branches of mathematics such as vector calculus,
complex numbers, and tensor algebra in a powerful common framework.

In section 4, the concept browser Conzilla is presented. A short introduc-
tion is given to the underlying philosophy of Knowledge Manifolds and the
Conceptual Web, and Conzilla is compared with other concept mapping tools.

In section 5, the conceptual web that is being built for Geometric algebra
is presented. The application of UML to mathematics in general is discussed.
Examples of multiple narration and other features of a concept browser is illus-
trated, and the advantages to traditional ways of communicating mathematics
is discussed.

1.3 The ILE Work at CID

This thesis has been written in cooperation with the Interactive Learning Envi-
ronments group at CID, whose general goals include the development of meth-
ods and tools for interactive forms of explorative individual learning.

This thesis is part of a larger effort within that group to improve the state of
the current mathematics education at all levels. There is an emerging awareness
that mathematics education is entering a profound crisis, where students at all
levels are having greater and greater trouble grasping the nature of the subject.
Critical thinking and self-confidence in mathematics among students is reaching
frighteningly low levels, leading to the reduction of the subject to mere training
in the use of algorithms. The severity of the problem was succinctly summarized
in a recent study [2]:

...the students seem to deliver better mathematical solutions in
a non-mathematical context and if the task has not been part of the
mathematics curriculum.

[my emphasis and translation].
Within the field of interactive learning environments in mathematics, we are

working towards the vision of designing a learning environment that is

• explorative and without features that unnecessarily limit the user. The
users are not supposed to be locked into “their level” of knowledge.

• multi-faceted but conceptually clear. It should be able to integrate (ex-
isting and future) historical accounts, visualizations, demonstrations, def-
initions, clarifications, etc. into a coherent and conceptually clear whole
(in sharp contrast to the present-day World Wide Web structure).
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• individualized. The system should be adjustable to and useful for a wide
spectrum of users: teachers, mathematicians, students at all levels and
complete beginners. Accessibility for humans and devices is also an im-
portant factor.

• distributed and dynamic. The system should allow the reuse of globally
distributed resources (digital content as well as individuals).

• technically sound. The system should follow the latest technical standards
within the field, as well as being portable to a wide range of platforms
and environments.

• free software. The system should be free for everyone to use, develop and
distribute.

The Garden of Knowledge project, described in [25], ended in 1997 and was
the first attempt at an interactive learning environment at CID, where some of
these thoughts were first formulated. The concept of a Knowledge manifold as a
framework for the design of interactive learning environments was introduced in
[26]. At the same time, around 1998, the idea of a concept browser began to take
concrete form. The techniques of conceptual browsing and multiple narration
in a knowledge manifold were first described in [27]. The first prototype version
of Conzilla was developed in 1999, and is documented in [31] and [32]. A more
detailed account on the history of mathematical learning environments at KTH
from the perspective of the group supervisor and main architect Ambjörn Naeve
is given in [29]. A tutorial on modeling mathematics using UML is available in
[28].



Chapter 2

Conceptual Modeling with
UML

Throughout this report, the technique of conceptual modeling is used to convey
ideas and give overviews. This chapter introduces the technique, comparing
it with other, more well-known techniques such as mind-maps and concept
maps. The purpose is not to enter a detailed analysis, but only to highlight the
important differences.

2.1 Mind-Maps and Their Siblings

2.1.1 Mind-Maps

The techniques for using mind-maps and conceptual maps have been around
since the 1960s, when Tony Buzan developed and patented the mind-mapping
technique as a graphic way of conveying information (see [3]). An example mind-
map is given in figure 2.1, which illustrates the main characterizing features of
mind-maps:

• Mind-maps are tree-like, always starting out from a central concept. Ob-
jects in the map are connected with lines.

• They are often very colorful, including images and creative layout.

• They are highly personalized, utilizing any mnemonic technique the cre-
ator can think of.

Mind-maps are being widely used in activities such as brainstorming, note tak-
ing and creation of overviews, and are generally acknowledged to be a very
useful mnemonic technique.

2.1.2 Concept Maps

The concept mapping technique was developed by Prof. Joseph D. Novak at
Cornell University in the 1960s (see, e. g., [33] and [34]). Concept maps are
like mind-maps in that they are “nodes and arcs” diagrams. But concept maps
differ from mind-maps in several important aspects:

7



8 CHAPTER 2. CONCEPTUAL MODELING WITH UML

Figure 2.1: Example mind-map (from http://www.nigeltemple.com/).

• There is in general no central concept, and concept maps are seldom
hierarchical. Instead, they are often general graphs.

• The use of images and colors is very limited.

• The objects in the map are concepts, linked together with directed arrows,
containing verbs. This way, a concept maps can be verbalized by forming
sentences from the concepts and relations.

An example concept map is given in figure 2.2.
Concept maps have been extensively studied and their benefits in learning

and assessment of learning are well documented (see, for example, [35] and [4]).
They provide a technique for capturing the internal knowledge of learners and
experts, and making it explicit in a visual, graphical form that can be easily
examined and shared. They have also been used in making expert systems [7]
and in cognitive science/artificial intelligence [22].

2.1.3 Other Diagrams

There are many other forms of visual diagrams resembling the above, such as
cognitive mapping, semantic nets, topic maps and others. They all share many
of the features of concept maps and mind-maps, and there is no need to discuss
them separately.

2.2 Visual Modeling with UML

The Unified Modeling Language, or UML, is an industry standard for object-
oriented modeling from OMG, the Object Management Group.

The OMG specification of UML [37] states the purpose of UML as follows:
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Figure 2.2: Example concept map, taken from [36].

The Unified Modeling Language (UML) is a graphical language
for visualizing, specifying, constructing, and documenting the arti-
facts of a software-intensive system. The UML offers a standard way
to write a system’s blueprints, including conceptual things such as
business processes and system functions as well as concrete things
such as programming language statements, database schemas, and
reusable software components.

UML represents the unification of several hundred modeling languages that
were in use before UML (hence the name). UML is used virtually everywhere
where software is developed, as a language for communicating structures and
relations in a graphical way.

In later years, the use of UML has broadened to include modeling in many
different areas, that have nothing à priori to do with software systems. Exam-
ples include business process modeling, organizational charts etc. It is in this
wider applicable form that UML is used here.

2.2.1 UML Basics

UML is a diagrammatic language with its own grammar. For a more complete
description of UML, see [39]. For a general introduction to object-oriented
modeling and design, see [38]. The most fundamental kind of UML diagram is
the class diagram. A class diagram depicts the relations between terms using
the following fundamental kinds of relations:

• specialization/generalization relations. This corresponds to narrower--
broader terms, such as “car” and “vehicle”. The concept “car” is a spe-
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Engine

Car

anEngine

Person

aCar

Vehicle

aPerson

Figure 2.3: Simple class diagram example: Cars, vehicles and motors.

cialization of the concept “vecihle”, while the concept “ vehicle” is an ab-
straction of the concept “ car”1. The relation is always drawn as
, pointing from the more special to the more general.

• exemplification/classification relations. This expresses instance/type re-
lations between, for example, “my car” and the concept “car”. That is,
“my car” is an example/instance of the concept “car”, while the concept
“car” is the class/type for “my car”. The relation is always drawn using
the arrow , pointing from the instance to the type.

• associations, that are any kind of relations between concepts. An associa-
tion is in general directionless, and is drawn as a plain line: .

• part/whole associations, also called aggregations, are an important kind
of association, that relates concepts where one in some sense is a part of
the other. We say that engines are parts of cars, or that cars contain
engines. This is modeled by creating an aggregation relationship between
the concept “car” (being the whole), and the concept “engine” (being the
part). The relation is always drawn as , pointing from the part
to the whole.

The diagrammatic representations are exemplified in figure 2.3. Figure 2.4
contains a verbalization of the relations. The class diagrams in UML contain
many more constructs, but the four given above are the most important for
conceptual modeling.

Another kind of UML diagram is the so-called activity diagram. An activity
diagram encodes the logical structure of an activity in a graphical way. An
example activity diagram is given in figure 2.5. An activity diagram encodes

1This construct has many names in different communities. In software contexts, it is called
a sub-class/super-class relation; in the linguistic community the terms hyponym/hyperonym
are often used.



2.2. VISUAL MODELING WITH UML 11

Figure 2.4: The three main relations in UML. Read the figure from this to that,
e.g., this is an instance of that, this is an abstraction of that, etc. Note that the
explanatory boxes are normally not present. Figure taken from [27].

Figure 2.5: An example activity diagram
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such things as

• Conditions that have to be fulfilled before continuing to the next activity.
In figure 2.5, we see that conditions are drawn within square brackets:
[condition].

• Activities that can be performed in parallel. The horizontal bar
is called a synchronization bar. In the example figure 2.5, activity2 and
activity3 can be performed independently of each other, while they both
must be performed before activity4 is started.

Again, there are many more constructs available in activity diagrams, but we
will not need them. There are also other kinds of UML diagrams, such as, e.g.,
state diagrams, use case diagrams, sequence diagrams, collaboration diagrams
and object diagrams, none of which will be used here.

2.3 A Comparison

The above introduction to UML should be enough to convince the reader that
UML diagrams are, in essence, very similar to mind-maps and concept maps.
There are, however, some important differences that need to be emphasized.

Structure Mind-maps are always association trees starting from a central con-
cept. Concept maps and UML diagrams usually treat some specific topic,
but are in general structured as graphs.

Syntax Mind-maps can often be understood by anyone comparatively fast,
as they use the perceptual apparatus to trigger concepts. They use no
special syntax of their own, but are very “anarchistically” and intuitively
constructed. On the other hand, concept maps have a very strict syntax
that builds directly on ordinary language. UML diagrams also use a strict
syntax to express commonly used concept relationships. Thus, both UML
diagrams and concept maps have much more restricted syntax than mind-
maps.

Semantics The relations in mind-maps are given no explicit meaning, and the
guiding organisational principles are implicit. Trying to express relations
in a more precise way using mind-maps is therefore difficult. In contrast
to mind-maps, all relations in concept maps are given verbal form and
thus an explicit meaning. In UML diagrams, the relations also have well-
defined semantics, but they are given a visual form. Thus, both concept
maps and UML diagrams can express structures and complex relations-
ships in a much more precise way than mind-maps.

Verbosity Thanks to the mnemonic techniques used in mind-maps, they often
manage to convey many ideas quickly, without using too many words. By
contrast, the relations in a concept map must be read as a proposition
before it can be understood. Concept maps can easily be perceived as
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being cluttered, being too verbose. UML diagrams, on the other hand,
need no such verbalization to be understood, once their grammar has
been learned. Similar relationships are immediately perceived as such and
UML-diagrams are, in general, much less cluttered than concept maps.

In short, UML diagrams combine some of the the visual clarity of mind-maps
with the expressiveness of concept maps, at the cost of needing a syntax of their
own.

2.4 Conceptual Modeling as a Human Language

The term object-oriented modeling is often used to describe the process of con-
structing UML diagrams. However, this term is too heavily associated with
software systems. We therefore use the term conceptual modeling, introduced
in [28], to describe UML-based modeling when applied in non-software sce-
narios. The term accurately describes the activity as modeling, i.e., trying to
describe a phenomenon in a simplified and idealized form.

In fact, UML models can be used in much the same way that concept maps
are used, that is, both for creating personal overviews, for communicating expert
knowledge, for student assessment, etc. Because of this similarity, the kind of
UML diagrams used in this report will be called concept maps, although they
do not follow the concept map syntax as described above.

It is important to stress that UML models in general do not represent a
formalization of information or knowledge. Instead, they are just as subjective
as ordinary language. They represent attempts at externalizing and communi-
cating knowledge, just the way ordinary language does. Thus, just like ordinary
text, such models must be accompanied with information of who made them,
when they were made, etc. Seen this way, conceptual modeling can be regarded
as a form of human language.

As a language, UML models have several benefits over plain text. The main
benefits are

• A visual overview, where structures are immediately evident and easy to
remember.

• Compactification of language. In graph form, many redundancies that
are inevitable in linear text disappear.

• Structure is separated from verbal expression. An UML diagram can
quickly be translated to another language.

• Multiple narration. The same diagram tells many stories, depending on
how it is read.

For an example of this, consider the concept map of the previous discussion
that is given in figure 2.6. Note that there is a certain kind of grammar in the
UML relations:
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Well−defined

Semantics

Intuitive

Diagram

Nodes and Arcs

Graph

Concept Map

Tree

Mind−Map

Syntax

Verbal Visual

Standardized

UML

Figure 2.6: Overview of section 2.3.

• Generalizations can often be read together as one word: In the figure, the
concept Visual syntax, being a kind of Syntax, is written only as Visual.
Reading along the generalization we can recreate Visual Syntax. In the
same way, UML Diagrams are kinds of Diagrams, etc.

• Aggregations form words the other way. Concept maps contain a Verbal
Syntax, the Concept map Syntax. Or in figure 2.3, cars contain car motors.

This grammar can be used to remove many redundancies and clarify strucures.
The concept map in figure 2.6 can be verbalized in many ways: UML Di-

agrams use nodes and arcs that have a standardized visual syntax. Mind-maps
are tree diagrams with an intuitive semantics. Thus a single map contains large
amounts of information in a structured way.



Chapter 3

Geometric Algebra

This chapter contains a small introduction to the basic concepts in geometric
algebra following loosely the treatment by David Hestenes in [14].

Geometric algebra is the name of an algebraic system designed to express
geometric relations and structures in a natural way. It is extremely flexible, as
demonstrated by the fact that the following mathematical systems all can be
described in a unified and intuitive way using geometric algebra:

• Complex numbers

• Matrix algebra

• Quaternions

• Vector algebra

• Tensor algebra

• Spinor algebra

• Differential forms

and all this in a coordinate-free theory. There is not enough room in this paper
to explore the consequences within mathematics and physics of having such
a unified mathematical system. Fortunately, much work (although sketchy in
places, due to the enourmous scope of such a task) has already been carried out
by David Hestenes at the Department of Physics at Arizona State University.
For the interested reader, I refer to the bibliography.

I specifically want to mention [14], which contains the mathematical foun-
dations of geometric algebra and geometric calculus, and [11], which contains
a very large number of reformulations of results from classical mechanics using
geometric algebra. An overview of geometric algebra is found in figures 3.1 and
3.2.

15
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Application

Projective

Spinor

*

*

*

Geometrical

Geometric Calculus

Complex

Matrix

Tensor

Algebraic

Quaternion

Definition

Concept

Geometric algebra

History

Figure 3.1: Overview of geometric algebra.

Reformulation

Differential geometry

*

Geometric Calculus

Differential forms

Calculus

Integration

Differentiation

Application

Geometric algebra

Physical

Multilinear function

Figure 3.2: Overview of geometric calculus.
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Undirected

Area

Line segment Cube

Undirected

Volume

Outer

Product

Geometric

Euclid’s

Square

x

y

Magnitude

xy

Distance

Figure 3.3: The geometric product of Euclid. This map uses a new contruct
from UML, the object flow. We see the objects x and y flowing into the product,
producing the object xy. This will be used more below.

3.1 A Short History of Geometric Algebra

3.1.1 Euclid and Descartes

The history of geometric algebra is the history of directed numbers and the
geometric product. Already in Euclid’s Elements, a clear distinction is made
between what he calls numbers, which are integers1, and magnitudes, which are
measures of geometrical quantities such as length and area. Magnitudes had
the peculiar property of not always being comparable as a ratio with another
magnitude, and thus the concept of real number to the greeks was a genuinely
geometrical quantity.

The product of two length magnitudes was an area, represented by a rect-
angle. Similarly, the product of a length magnitude and an area magnitude
was a volume. But higher-dimensional measures were unknown to the greeks,
so length magnitudes and volume magnitudes could not be multiplied. By
contrast, multiplying two numbers resulted in a new number, a non-geometric
entity. A number could be represented as a magnitude of the corresponding
length, while the reverse mapping was impossible as not all magnitudes could
be represented as numbers2. This is illustrated in figure 3.3.

By the time of René Descartes in the seventeenth century, the concepts of
1He used the concept of ratio, but did not conceive of it as a number.
2even for a suitable choice of unit length, as proven by the fact that the diagonal of a square

is incommensurable with its sides.
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Line segment

Line segment
 of length m

One−way

Product

m

Arithmetic

n

Cardinal

Transformation

Euclid’s

Interpretation

nm

Number

Figure 3.4: The number concept of Euclid.

number and magnitude had changed. No longer was it felt that numbers and
magnitudes were fundamentally different – in fact, Descartes without hesita-
tion labelled line segments with symbols representing their numeric lengths.
The history of this development of the number concept is too complicated to
go into here, but it is interesting to see what happened to the concept of mul-
tiplication of numbers/magnitudes. As seen in figure 3.5, Descartes made no
distinction between multiplying numbers and line segments. The product of
two line segments is a new line segment with a length equal to the product
of their lengths, for which he found a geometric construction. Thus the same
multiplication was used for both line segments and numbers. This identification
of numbers with lengths marked the beginning of analytic geometry, which has
made possible the great advancements in science and mathematics to this very
day.

One important observation is that Descartes’ definition of the geometric
product as well as Euclid’s number product are binary compositions, returning
a new object of the same type. Euclid’s geometric product, on the other hand,
was a product that returned a higher-dimensional object. This kind of product
will be called outer product.

3.1.2 The Birth of the Vector Concept: Grassmann, Hamilton
etc.

Descartes made no distinction between line segments of the same length but
different directions when multiplying or adding segments. The idea of using
directed line segments in analytic geometry is due to Hermann Grassmann and
William R. Hamilton in the nineteenth century. Hamilton invented quaternions,
an algebraic construct which was intended as a generalization of complex num-
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Figure 3.5: The number concept of Descartes

bers to three dimensions. They have vectorial qualities and were (and still are)
used to describe rotations in three-dimensional spaces.

However, it was Grassmann who in his Lineale Ausdehnungslehre [8] first
developed a vector concept like the one we use today, where a vector is seen as
representing all line segments of equal length and direction. He also introduced
the classical operations on vectors:

• Multiplication by a scalar (a directionless real number), which corresponds
to Descartes’ multiplication in that it multiplies the length of the vector
by a real number. In contrast to Descartes, it keeps the direction of the
vector. See figure 3.6.

CompositionValuedVector

a

ka

Vector

Scalar

Scalar multiplication
k

Figure 3.6: Multiplication of vector and a scalar.
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• Addition of vectors. This was done, as by Descartes, by placing the
line segments end-to-end. But Grassmann kept their directions, while
Descartes lined them up. The effect was, as we know, a very useful vector
addition.3

• Inner multiplication of vectors (see figure 3.7). This was a new concept,
for the first time taking the directions of line segments into consideration
when multiplying them, something neither Descartes nor Euclid had done.
This geometric product is an inner product in the sense that it returns
not a vector, but a scalar, a lower-dimensional object.

Using these operations, the theory of vector algebra was developed. Later,
Gibbs added to the list of geometric products the one we know today as the
vector product, which is only applicable in three dimensions, and which gives
a vector orthogonal to each of the vectors in the product. It is an important
product, as it complements the information given by the inner product regarding
the relative directions of two vectors. More significantly, it is actually the first
of the geometric products since Euclid to result in a geometric object! This is
one of the more fundamental reasons why it plays such an important role in
vector analysis. See figure 3.8. It is also the first binary composition of vectors.

3Which, by the way, was used already by Galilei when adding forces.
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a^b

Figure 3.11: The 2-blade a ∧ b.

3.1.3 The Outer Product

But the vector product leaves many questions unanswered. What is the gen-
eralization to more than three dimensions? Why does it not work even in two
dimensions, unlike the other geometric operations? And in three dimensions,
what is the significance of the fact that the length of the resulting vector equals
the area of the parallelogram spanned by the two vectors in the product?

It is stunning to realize that Grassmann had the answer to those questions,
an answer which has not been widely recognized even today. The problem of
developing a true geometric product that is capable of providing a full expres-
sion of geometrical ideas has recurred in mathematics since Euclid, and many
systems have been developed that try to address it, as seen in the introduction
to this chapter. However, none of them has succeeded in providing a generally
applicable language for geometry that can be express all the ideas contained
in those systems. Luckily, Grassmann provided, in the 1840s, the necessary
constructs to create such a language.

Grassmann introduced a new product, called the outer product, into his
vector algebra. He defines the outer product a ∧ b of two vectors a and b to
be a new kind of object: a 2-blade. In effect, just as a vector has a length
and a direction, a 2-blade is a two-dimensional object which has an area and
a direction. In effect, a 2-blade is a two-dimensional directed magnitude. The
direction of a bivector is simply a plane in which it is located.

The outer product of two vectors can be represented by the parallelogram
spanned by them, as in figure 3.11. This parallelogram is the same as used when
constructing the vector product, except that we now represent the product with
the parallelogram itself! And just as the vector product, the outer product is
anti-commutative: a∧b = −b∧a , which corresponds to a change in orientation
of the parallelogram. Note that the parallelogram is only one of many possible
representations of a 2-blade. In fact, all plane two-dimensional figures lying in
the same plane and with the same numeric area can be used to represent the
same 2-blade.

Note that, of all the products seen so far, this product most closely resembles
Euclid’s line segment product (see figure 3.12). It really generates geometric
quantities of higher dimension. Note that in contrast to the vector product,
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Figure 3.12: The outer product of vectors.

this product works without trouble in two, three, four etc. dimensions, as the
resulting object lies in the plane spanned by the two vectors.

Now this definition of the outer product readily lends itself to generalization:
the outer product of three vectors, or equivalently, of a vector and a bivector,
is defined as a new kind of object, a 3-blade. A 3-blade is a three-dimensional
object which has a volume and a direction. It can be represented as the par-
allelepiped swept out by the three vectors. This concept is readily generalized
to higher dimensions, and the corresponding entities are called k-blades. The
next chapter contains a formal definition of the outer product.

3.1.4 The Geometric Product

Grassmann spent most of his efforts on developing the properties of the inner
and outer product. In the later stages of his life, he realized that there was one
more step of generalizations that could be done, one that unified the products
and finally created a true geometric product. But he never had the time to
draw the conclusions. Instead, it was Clifford that formalized the ideas into a
coherent algebraic systems that also bears his name: Clifford Algebra. It is not
widely recognized that this algebra is the natural continuation of ideas from
Euclid, Descartes and Grassmann on how to create a truly universal geometric
algebra.

The fundamental step that was made by Grassmann and perfected by Clif-
ford, was recognizing that the inner and outer product together fully describe
the relative directionality of two vectors – the inner product measures the
amount of their orthogonality, and the outer product measures the direction
of their orthogonality. What they did was that they introduced a new product,
which we will call the geometric product, defined as
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ab = a · b + a ∧ b (3.1)

This step is highly nontrivial. As one can see, it adds two altogether different
things: a scalar and a 2-blade. The question arises: what kind of entity results
from this addition? The answer can be understood by an analogy to the complex
numbers: adding a real number and an imaginary number creates a new number,
a complex number, that can be decomposed into the two parts. The same way,
the above sum results in a new object consisting of a scalar and a 2-blade! This
sum is a so-called formal or direct sum, which does not mix the objects, but just
assembles them. We call the resulting entity a multivector consisting of a scalar
and a 2-blade part. This is illustrated in figure 3.13. The geometric product
can easily be used to retrieve the inner and outer product – we just note that,
as the inner product is commutative and the outer product anti-commutative,
we have

1
2
(ab + ba) =

1
2
(a · b + a ∧ b + b · a + b ∧ a)

=
1
2
(a · b + a · b + a ∧ b− a ∧ b)

= a · b

1
2
(ab− ba) =

1
2
(a · b + a ∧ b− b · a− b ∧ a)

=
1
2
(a · b− a · b + a ∧ b + a ∧ b)

= a ∧ b

In general, the elements in a geometric algebra can be of different kinds.
Bivectors, being two-dimensional entities, are said to have grade 2. Similarly,
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we say vectors have grade 1, and 3-vectors grade 3. Scalars are given grade
0, as they have no dimensional properties. In general, k-vectors have grade k.
Multivectors thus combine elements of different grade. This is illustrated in
figure 3.14. The geometric product creates a powerful and beautiful algebra of
multivectors which is defined formally in the next section.

This Clifford algebra has not received much attention as an algebra for ge-
ometry, and most mathematicians and physicists are not aware of its algebraic
and geometrical power. It is only during the last couple of decades that Grass-
mann’s universal geometric algebra has seen a revival. The physicist David
Hestenes at Arizona State University has launched a comprehensive program
for the revival of Geometric Algebra as the algebraic language of choice for
geometry in mathematics and physics, and has contributed reformulations of
many mathematical and physical theories in terms of geometric algebra. This
includes complex numbers, quaternions, spinor theory, linear algebra, differen-
tial geometry, projective geometry as well as large part of classical mechanics.

3.2 Definition

We now turn to a short formal introduction to geometric algebra. In contrast
to what Grassmann did, but in line with Clifford, we start with the definition
of the geometric product, something that leads to a much cleaner algebraic
system.

Definition: A geometric algebra is a set G together with two binary composi-
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tions: multiplication (a, b 7→ ab) and addition (a, b 7→ a + b), and for each
i ∈ N an operator < · >i : G → G (the grade operator), for which the
axioms below are met. The elements of G are called multivectors:

Ring Axioms: These axioms make the set into a non-commutative ring.
For each element A, B and C from G, the following must hold

1. Commutativity of addition:

A + B = B + A

2. Associativity of addition:

(A + B) + C = A + (B + C)

3. Associtativity of multiplication:

(AB)C = A(BC)

4. Distributivity of multiplication:

A(B + C) = AB + AC

(A + B)C = AC + BC

5. There is an element 0, such that A + 0 = A

6. There is an element 1, such that 1A = A1 = A

7. There is an element −A such that A + (−A) = 0

Grade Axioms: These axioms ensure the existence of the different sorts
of multivectors. A multivector A is said to be a k-vector, or to be of
grade k, if A =< A >k.

1. The grade operator is a projection, i.e., for all A in G, << A >k>k=<
A >k. Thus, < A >k is always a k-vector, and we can call < A >k the
k-vector component of A. Thus the grade operator < · >i : G → G
returns, for each i, the i-vector component of a multivector.

2. Each element A is the sum of its k-vector components:

A =< A >0 + < A >1 + < A >2 . . .

This creates a unique decomposition of elements in G into k-vectors.
This is the reason for calling the elements of G multivectors.

3. The elements of grade 0 are the real numbers, and are also called
scalars. Addition and multiplication of scalars are the ordinary ad-
dition and multiplication, and the 0- and 1-elements of the geometric
algebra are 0 and 1, respectively. Additionally, scalars commute with
all multivectors.
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4. The grade operator is linear over elements of grade 0. That is, for
all elements λ of grade 0 (i.e. real numbers), and all multivectors A
and B,

< λA + B >k= λ < A >k + < B >k

Before formulating the next axiom, we need a definition: A k-blade
is any multivector of the form a1a2a3 . . . ak, where all ai are non-zero
vectors (elements of grade 1) that all anticommute, i.e. aiaj = −ajai

for i 6= j. We can now formulate the blade axiom:

5. A k-blade is a non-zero k-vector, and any k-vector can be written
as a sum of k-blades. This creates a grounding for multivectors in
vectors, as any multivector can be described as a sum of products of
vectors.

Euclidean Sign Axiom:

1. For each vector (i.e. 1-vector) a, its square a2 is a positive real
number. This axiom gives us a Euclidean structure on the algebra.

An equivalent, shorter definition is:

A geometric algebra is a graded, non-commutative algebra over the
real numbers satisfying Grade Axioms 4 and 5, and the Euclidean
Sign Axiom.

The axiom structure is illustrated in figure 3.15. In this figure, we also see that
the euclidean sign axiom is a special case of a more general sign axiom that only
requires a2 to be a real number. The non-degenerate sign axiom requires that
there is a basis {ei} with eiej = −ejei (i.e., it is orthogonal) and a2

i 6= 0, and is
used in non-euclidean geometry such as four-dimensional Minkowski space.

Another thing we see is that we may assume things about the dimensionality
of the space. We will study some properties of finite spaces below, but most
properties of geometric algebra are independent of dimension.

3.3 Intuition

This list of axioms seems complicated, and indeed it is rather extensive. It is
also not very clear how to go about calculating with them. So, now that we
have an axiomatic grounding for geometric algebra, let us try to give an idea
what the algebra looks like.

3.3.1 The Linear Space of 1-vectors

First, let us note that the 1-vectors form a linear space over the 0-vectors. This
is easily seen directly from the axioms. There is a twist, however: the 0-vector
and the number 0 must be identical! The reason for this difference is that the
real numbers are embedded into a larger algebra, that by definition must have
only one zero element. The resulting space of 1-vectors is denoted by G1. In
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Figure 3.15: The axioms of geometric algebra
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the examples that follow, we assume that G1 has the finite dimension n, even
though most of the results are more general.

3.3.2 The Inner Product of Vectors

Taking two vectors a and b, we can now define the inner product of them as we
did in section 3.1.4:

a · b =
1
2
(ab + ba).

This is always a scalar, as (a + b)2, a2 and b2 are scalars, and

(a + b)2 = a2 + ab + ba + b2 = a2 + b2 + 2a · b.

Now we can readily verify that this defines an inner product with the usual
properties: bilinear, symmetric and positive definite. We thus get a Euclidean
space, with the usual definition of orthogonality : a · b = 0. In the case of
finite dimension, let us introduce an orthonormal basis {e1, e2, e3, . . . , en} in
this space, which we will use from now on to illustrate the algebra. We note
some of the properties of the inner product:

1. a and b are orthogonal if and only if ab = −ba.

2. a and b are parallel, i.e., a = λb for some scalar λ, if and only if a · b = ab,
or equivalently, ab = ba.

Note first that if a = λb,

a · b = (λb) · b =
1
2
(λbb + bλb)

= λb2 = (λb)b = ab

The other way around, let b = b‖ + b⊥, where b‖ is parallel to a, and b⊥ is
orthogonal to a. If ab = ba, then 0 = ab− ba = 2ab⊥. But Grade Axiom
5 then says that either b⊥ = 0 or a = 0, both of which indicate a ‖ b.

3. If the vector b is written as b‖ + b⊥, we have a · b = ab‖

4. We define the length of a vector the usual way: |a| =
√

a · a =
√

a2. A
more general norm on the whole of G will be defined later.

3.3.3 The Outer Product of Vectors

Similarly, we introduce the outer product of two vectors as earlier:

a ∧ b =
1
2
(ab− ba)

and note some of its properties which follow immediately:

1. It is bilinear and anti-commutative: a ∧ b = −1
2(ba− ab) = −b ∧ a.

2. a and b are orthogonal if and only if a ∧ b = ab.



30 CHAPTER 3. GEOMETRIC ALGEBRA

3. a and b are parallel if and only if a ∧ b = 0. In particular, a ∧ a = 0.

4. If the vector b is written as b‖ + b⊥, where b‖ is parallel to a, and b⊥ is
orthogonal to a, we have a ∧ b = ab⊥. Hence, according to Grade Axiom
5, when a 6= 0 and b 6‖ a, a ∧ b is always a 2-blade and thus a bivector.

5. We always have
ab = a · b + a ∧ b

So the geometric product of two vectors has a scalar part and a bivector
part. We also note that a ∧ b =< ab >2, the highest-grade part of the
geometric product of a and b, which we will use below to generalize the
outer product.

This concludes the formalization of the informal discussion in the previous sec-
tion.

3.3.4 Calculating with the Geometric Product

We have now seen what happens when taking the geometric product of vectors,
but the geometric product in general remains obscure. But it turns out that
using the basis defined in 3.3.2, we can make the geometric product explicit –
we just need to see what it does to basis vectors. And this is an easy task – we
need only remember the following two rules, which are direct consequences of
the ortonormality of the basis:

eiej = −ejei if i 6= j

e2
i = 1

In words: different base vectors anticommute, while the square of a base vector
is 1. For example, the geometric product of a = a1e1 +a2e2 and b = b1e1 + b2e2

is

ab = (a1e1 + a2e2)(b1e1 + b2e2)
= a1b1 + a2b2 + (a1b2 − a2b1)e1e2 (3.2)

which makes it perfectly clear that

a · b = a1b1 + a2b2

a ∧ b = (a1b2 − a2b1)e1e2.

Note that e1e2 is a bivector by definition, and that a∧ b has a natural measure
a1b2 − a2b1, which is exactly the directed area of the parallelogram spanned by
a and b. This way, products of any multivectors expressed in this basis can
easily be calculated. But we still only have a basis for G1, so we turn to the
problem of finding a basis for the whole of G.
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3.3.5 Bivectors Explained

With the aid of this simple formulation we can now analyze the space of 2-
vectors (or bivectors), which we call G2. Remember that all bivectors can be
described as a sum of 2-blades. 2-blades are of the form a1a2, where a1a2 =
−a2a1, which we now know to mean that a1 and a2 are orthogonal. But if
a1 =

∑n
1 λiei and a2 =

∑n
1 µiei, then we can expand and rearrange the product

a1a2, collecting terms containing the same pair eiej :

a1a2 =
∑
i6=j

λiµjeiej =
∑
i<j

(λiµj − λjµi)eiej

The terms where i = j all add to zero, as
∑

λiµieiei = a1 · a2 = 0. The
remaining terms are all multiples of eiej , and thus are all bivectors. This shows
that all bivectors can be expressed as a sum of terms of the form λijeiej . We
now only need to verify that the bivectors {eiej | i, j = 1 . . . n, i < j} are
linearly independent to prove that they form a basis for the space of bivectors.
Let ∑

i<j

λi,jeiej = 0.

Multiplying this from the left with any bivector eser, where 1 ≤ r < s ≤ n gives
the multivector

λr,s + [terms of grade 2 and 4] = 0

which shows λr,s must be zero. The same argument applies to any r and s, so
all λi,j = 0. Thus we know that {eiej | i, j = 1 . . . n, i < j} is a basis for the
bivectors.

3.3.6 k-vectors Explained

An analogous argument can be applied to the space of k-vectors, which is a
linear subspace Gk of G, showing that terms of the form

ei1ei2 . . . eik

with strictly increasing index ir, form a basis for Gk. Thus, a little combinatorics
tells us that Gk has the dimension

(
n
k

)
.

As we only have n independent base vectors, there are no elements of grade
higher than n. Hence, by combining the bases for all Gk, we get a basis for
the whole of G. For example, when the vector space G1 has dimension three, a
basis for G is:

{1, e1, e2, e3, e1e2, e2e3, e1e3, e1e2e3}
If we regard the whole geometric algebra G as a linear space over the real

numbers, this linear space has the dimension
n∑

k=1

(
n

k

)
= 2n

which is a beautiful result. Since we now have a basis for G, we have sufficient
information to carry out all sorts of calculations, and any definitions we make
can easily be formulated in terms of this basis.
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3.3.7 k-blades Explained

The one remaining unexplained multivector concept seems to be k-blades. We
will now show:

1. that a k-blade Ak = a1 . . . ak uniquely determines a linear subspace Ak

of the vector space G1, namely the subspace spanned by the vectors
a1, . . . , ak.

2. that a given subspace V of G1 defines a unique k-blade Ak, except for a
scalar factor.

When we have proven this, we will adopt the terminology that a vector b is said
to be parallel to Ak if it lies in Ak, and orthogonal to Ak if it lies in Ak

⊥.

Step 1:

How can we, given a k-blade Ak, be sure that Ak does not depend on the
choice of orthogonal vectors a1, . . . , ak? We must find a definition of Ak that is
independent of the choice of a1 . . . ak.

Let us analyze the product of Ak with a vector b = b‖ + b⊥, where b‖ is
the component of b parallel to a1, . . . , ak, and b⊥ the component orthogonal to
a1, . . . , ak. We first note that Akb⊥ is the (k + 1)-blade a1 . . . akb⊥.

On the other hand, b‖ =
∑

λiai, and the product Akb‖ therefore is a sum of
terms of the form a1a2 . . . akai. Such a term can be rearranged using the rules
aiaj = −ajai and a2

i = [scalar]. The result is always a (k− 1)-blade, consisting
of a multiple of the vectors aj , j 6= i. For this reason, Akb‖ gives a (k−1)-vector
– the sum of those (k − 1)-blades.

Finally, we have:
Akb = Akb‖︸ ︷︷ ︸

grade k−1

+ Akb⊥︸ ︷︷ ︸
grade k+1

(3.3)

that is, multiplying a k-blade with a vector has a grade-lowering and a grade-
raising function, played by the components of the vector parallel and orthogonal
to a1, . . . , ak, respectively. The above decomposition actually implies that Akb
has components of grade k − 1 and k + 1 only, so that

Akb =< Akb >k−1 + < Akb >k+1 (3.4)

This means that b is parallel to the vectors a1, . . . , ak precisely when < Akb >k+1=
0, and orthogonal to them precisely when < Akb >k−1= 0. These expressions
are independent of the choice of vectors a1, . . . , ak, and we can thus define Ak

to be the space of vectors b such that < Akb >k+1= 0.

Step 2:

On the other hand, given a k-dimensional subspace V of G1, and two k-blades
Ak and Bk with Ak = Bk = V , i.e., both defining the same unique subspace of
G1, we can show that Bk = λAk. In other words, a subspace of G1 uniquely
defines a k-blade (up to multiplication by a scalar).
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To show this, let Ak = a1 . . . ak with orthogonal ai, and Bk = b1 . . . bk with
orthogonal bj . Both sets of vectors {ai} and {bj} are by definition bases for V .
Let us express Bk in terms of the ai. We have

bj =
k∑

i=1

λijai for some λij .

Using this to expand Bk = b1 . . . bk, we get a sum of terms of the form λai1ai2 . . . aik .
Such a term is a k-blade if all ail are different. If the same ai occurs twice, they
will produce a scalar, and the term will be a blade of grade at most k − 2.
However, we know that Bk is of grade k, so the only terms that do not cancel
are those where no ai occurs twice, i.e., where each ai occurs exactly once. But
those terms can be rearranged to be of the form λa1a2 . . . ak, and thereafter
added. This shows that, in fact, Bk = λAk for some λ.

We have now established the geometrical interpretation of k-blades: they lie
in a k-dimensional subspace of G1, and within such a subspace, they only differ
by a scalar constant. This constant can be interpreted as measuring the relative
k-volume of the blades. This justifies the interpretation of k-blades as directed
areas. For example, the 2-blade e1e2 defines a unit area in the e1, e2-plane. The
2-blade e2e1 lies in the same plane, but has the opposite area: e2e1 = −e1e2.
As the value of the constant is proportional to the length of each vector ai,
the k-blade concept really seems to capture the idea of a directed measure of
the area. The absolute value of the area of a k-blade Ak = a1 . . . ak is simply√

a2
1 . . . a2

k. A more general norm of multivectors will be defined below.

3.3.8 Conclusions

This ends our short introduction to the basic concepts of geometric algebra.
We have managed to:

• Construct an explicit basis for the whole algebra in the finite case, together
with simple algebraic rules for calculation in that basis.

• Give a geometric interpretation of the k-blades that corresponds to the
intuitive picture of directed planes and volumes.

• Analyze the basic features of the different products in the geometric al-
gebra.

The reader is referred to figure 3.14 for an overview of the multivector concept.

3.4 Constructions

As seen in figure 3.16, a geometric algebra can also be explicitly constructed in
several ways. This is important, as this enables us to establish the consistency
of the axioms4, and also aids us in understanding the algebra. However, there

4relative to what was used in the construction, of course, as absolute consistency cannot
be proven.
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Figure 3.16: Definitions of geometric algebra

is no room here to go into the details of the constructions. But in figures 3.17
and 3.18, three constructions are described as activity diagrams.

3.5 Algebraic Concepts

We are now ready to formally define some algebraic concepts in geometric al-
gebra. This section is far from exhaustive; for further reference, see [14] and
[11]. An overview of the operators in geometric algebra is given in figure 3.19,
while figure 3.20 shows the interdependencies between the definitions of the
operators.

3.5.1 Generalizing the Outer Product

Our first mission is to generalize the outer product. We want to generalize it
to the whole of G as Grassmann did. The intuition was that the outer product
of two vectors was to represent the parallelogram spanned by the two vectors,
and in the same way, we want a∧ b∧ c to be the parallelepiped spanned by the
three vectors, with the appropriate volume. In general, for the outer product
of k vectors a1, . . . , ak, we want a1∧ . . .∧ak to be a k-blade of volume resulting
from taking the product of the orthogonal lengths of the ai (this is precisely the
generalized parallelepiped volume), lying in the space spanned by a1, . . . , ak. In
fact, if a1, . . . , ak are orthogonal, we want a1 ∧ . . . ∧ ak = a1 . . . ak.

From equation 3.4 above we know that

Akb =< Akb >k−1 + < Akb >k+1

for k-blades Ak. We also know that the second term is the k + 1-blade Akb⊥,
which corresponds precisely to what we would want Ak∧b to mean: the (k+1)-
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Figure 3.17: Tensor algebra construction

Figure 3.18: Quotient ring/Combinatorial construction
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Figure 3.19: The operators of a geometric algebra
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Figure 3.20: The dependencies between the constructs in geometric algebra.
Note that this map contains a new kind of UML relation: the dependency.
For example, the meet product depends on the outer product and the duality
operator for its definition.
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blade swept out by the orthogonal parts of the vectors a1, . . . , ak, b. So we define

Ak ∧ b =< Akb >k+1 (3.5)

This definition has an natural generalization to k-blades: If Ar is an r-blade,
and Bs an s-blade, we define:

Ar ∧Bs =< ArBs >r+s (3.6)

Now that we know how this works for any two blades, it can be linearly extended
to the whole space. This product can easily be shown to be associative.

But how to calculate with the outer product? We need to make sure we know
how to calculate with the base elements. If we want to take the outer product
of two base elements, ei1 . . . eik and ej1 . . . ejm , we only need to check if they
contain a common base vector. If they have, say, the vector ejl

in common, it
will act grade-lowering, and there will be no k+m-vector component of the outer
product, and so the outer product is 0. Otherwise, all vectors are orthogonal,
and the outer product is just ei1 . . . eikej1 . . . ejm . For example,

(e1 + e3) ∧ (e3 + e2e3) = e1 ∧ e3 + e1 ∧ (e2e3) + e3 ∧ e3 + e3 ∧ (e2e3)
= e1e3 + e1e2e3

We now state some consequences of the definition of the outer product, in
addition to those in section 3.3.3:

1. Ak ∧ Ak = 0 for all k-blades Ak, k > 0, as A2
k = a1 . . . aka1 . . . ak is a

scalar.

2. If a is a vector and Ak a k-blade, it follows from 3.3 and 3.5 that

Ak ∧ a = Ak ∧ a⊥ = Aka⊥ (3.7)

3. On the other hand, from the same equations it follows that a is orthogonal
to Ak precisely when

Ak ∧ a = Aka (3.8)

while a is parallel to Ak precisely when

Ak ∧ a = 0 (3.9)

4. If a1, . . . , ak are any linearly independent vectors, and b1, . . . , bk are the
vectors that result from carrying out Gram-Schmidt orthogonalization on
a1, . . . , ak, then

a1 ∧ . . . ∧ ak = b1 ∧ . . . ∧ bk = b1 . . . bk

This is clear, since only the successive orthogonal components remain in
each step in both cases. If the vectors a1, . . . , ak are linearly dependent,
the expressions are all equal to zero.

5. Thus, if a1, . . . , ak are linearly independent, then a1 ∧ a2 ∧ . . . ∧ ak is a
k-blade with volume

√
b2
1 . . . b2

k.

6. If a1, . . . , ak are linearly dependent, then a1 ∧ a2 ∧ . . . ∧ ak = 0 and vice
versa. This is because being linearly dependent is equivalent to not span-
ning a k-volume.
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3.5.2 The Inner Product

We now generalize the definition of the inner product. The inner product of
two blades Ar and Bs is defined as

Ar ·Bs =< ArBs >|r−s| (3.10)

which is linearly extended to the whole of G, with the additional requirement
λ ·Ak = Ak · λ = 0 for scalars λ.

Let a be a vector, and Ak a k-blade. Recall the formula 3.4:

Aka =< Aka >k−1 + < Aka >k+1

With the above definition of the inner and outer products, we have

Aka = Ak · a + Ak ∧ a (3.11)

so we see that the inner product is the grade-lowering part of the geometric
product with a vector, and the outer product the grade-raising part.

Calculating with the inner product is as simple as for the outer product, if
we only note that we only need to keep those products of base elements, where
one of the sets of base vectors ei is completely contained in the other (so that
they maximally cancel, and the grade of their product is |r − s|):

(e1 + e2e3) · (e2e3 + e1e2) = e1 · (e2e3) + e1 · (e1e2) + (e2e3) · (e2e3) + (e2e3) · (e1e2)
= e1e1e2 + e2e3e2e3

= e2 − 1

Let us enumerate some properties of the inner product:

1. If a is a vector and Ak a k-blade, it follows from 3.11 and 3.10 that

Ak · a = Ak · a‖ = Aka‖ (3.12)

2. On the other hand, from the same equations it follows that a is parallel
to Ak precisely when

Ak · a = Aka (3.13)

while a is orthogonal to Ak precisely when

Ak · a = 0 (3.14)

3. The inner product Ak · a of a vector a and a k-blade Ak = a1 . . . ak gives
a (k− 1)-vector which is inside Ak (in the sense of being composed of the
ai), but orthogonal to the projection a‖ on Ak.

That it is a combination of the vectors in Ak was seen in section 3.3.7.
That it is orthogonal to a‖ is seen by proving (Ak · a) · a‖ = 0 :

(Ak · a) · a‖ = (Aka‖) · a‖ = [definition]
= < Aka‖a‖ >k−2

= < Aka
2
‖ >k−2= 0
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which gives some intuition of the inner product between a vector and a
k-blade. Similar relations hold between two blades: the inner product is
always orthogonal to the projection.

4. Two distinct base k-blades eI = ei1 . . . eik and eJ = ej1 . . . ejk
are “orthog-

onal” in the sense that eI · eJ = 0.

3.5.3 The Geometric Product Revisited

The equation 3.4

Aka =< Aka >k−1 + < Aka >k+1

is linear in Ak, so it is still valid when Ak is a k-vector. Multiplying this formula
with a vector b that is orthogonal to a, and re-applying the formula gives:

Akab = (< Aka >k−1 + < Aka >k+1)b
= (Bk−1 + Bk+1)b
= < Bk−1b >k−2 + < Bk−1b >k + < Bk+1b >k + < Bk+1b >k+2

Thus, Akab has components of grade k − 2, k and k + 2:

Akab =< Akab >k−2 + < Akab >k + < Akab >k+2

Re-applying this argument with any blade instead of ab to the right, we see
that we always get terms differing in grade by two. The maximal grade is k +
[number of vectors to the right], and the minimal k−[number of vectors to the right].
Thus, for any r-blade Ar and any s-blade Bs, with r ≥ s ,

ArBs =< ArBs >r−s + < ArBs >r−s+2 + . . .+ < ArBs >r+s

However, the same argument applies when multiplying from the left instead,
with r ≤ s, so in general:

ArBs =< ArBs >|r−s| + < ArBs >|r−s|+2 + . . .+ < ArBs >r+s

This expression is bilinear, so it applies just as well when Ar and Bs are r- and
s-vectors, respectively. We now see that the highest-grade component is the
outer product: < ArBs >r+s= Ar ∧ Bs, while the lowest-grade component is
the inner product: < ArBs >|r−s|= Ar ·Bs.

Of course, when calculating using the basis vectors, the above formulas
are simple to understand: the grade is lowered by one when a base vector is
multiplied by itself, otherwise the grade is raised. For example:

(e1 + e3)(e2e3 + e3e4) = e1e2e3 + e1e3e4 + e3e2e3 + e3e3e4

= e1e2e3 + e1e3e4 − e2 + e4
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3.5.4 The Scalar Product

The scalar product is of interest for multivectors in general. It is defined as

A ∗B =< AB >0

i.e., the scalar part of the geometric product of A and B. Some properties of
the scalar product:

1. If Ak and Bk are k-vectors, we have

Ak ∗Bk = Ak ·Bk

2. If Ar and Bs are r- and s-vectors, respectively, with r 6= s, we have

Ar ∗Bs = 0

3.5.5 Reversion

We define the reverse A†
k of a k-vector Ak as

A†
k = (−1)

k(k−1)
2 Ak = (−1)(

k
2)Ak

This is then extended linearly to the whole algebra.
For k-blades Ak = a1 . . . ak, this is precisely what happens when reversing

the order of multiplication: ak . . . a1 = (−1)
k(k−1)

2 a1 . . . ak = (a1 . . . ak)†, as this
involves

(
k
2

)
= k(k−1)

2 swaps of adjacent elements. For any vectors a and b, we
have (ab)† = a · b + (a ∧ b)† = a · b − a ∧ b = ba, as a ∧ b is a 2-blade. In fact,
it can be proven that for any multivectors A and B, (AB)† = B†A†, justifying
the name “reversion”. As a special case, for any vectors a1, . . . , ak, we have
(a1 . . . ak)† = ak . . . a1.

3.5.6 Multivector Norm

We define the norm |A| of a multivector A as

|A| =
√

A† ∗A

This is shown to be well-defined by first noting that A† ∗ A =
∑

r < A† >r

∗ < A >r. Letting < A >r=
∑

i λiei1 . . . eir =
∑

i A
i
r be the decomposition

of < A >r into a linear combination of base r-blades ei1 . . . eir , we see that
< A† >r ∗ < A >r=

∑
i(A

i
r)
†Ai

r, as all mixed terms cancel. We now note
that for a base r-blade eI = ei1 . . . eir , we have e†IeI = eir . . . ei1ei1 . . . eir = 1, so
< A† >r ∗ < A >r=

∑
i λ

2
i ≥ 0, and so A†∗A ≥ 0, and the norm is well-defined.

Note that the definition is not dependent on a choice of basis.

3.5.7 Inverse of k-blades

Every non-zero k-blade Ak = a1 . . . ak has a multiplicative inverse A−1
k = A†k

|Ak|2
,

as AkA
†
k = A†

kAk = a2
1 . . . a2

k = |Ak|2 > 0.
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3.5.8 The Pseudoscalar

In a geometric algebra where the vector space is of dimension n, the space of n-
vectors is one-dimensional, with the single base element e1 . . . en. This element
is called the pseudoscalar of G, and is denoted by I. As I† = en . . . e1, we see
that I† is the inverse of I. We note that any product a1 . . . an of n orthogonal
vectors must be a multiple of I, as the space of n-vectors is one-dimensional.
This multiple is λ = (a1 . . . an)I−1.

More generally, for any vectors a1, . . . , an (orthogonal or not), the outer
product a1 ∧ . . . ∧ an is an n-vector (which is zero when they are linearly de-
pendent). If we define

det(a1, . . . , an) = (a1 ∧ . . . ∧ an)I−1

this defines the usual determinant in a coordinate-free way, as is easily verified.
Using this definition, the whole theory of determinants can be developed (which
is done in [10]).

3.5.9 Dualization

In a geometric algebra where the vector space is of dimension n, we can define
the dual of a multivector A as

Ã = AI−1

For k-blades Ak, we will show that Ãk is a blade which is completely orthogonal
to Ak, and that in fact, Ãk = Ak

⊥, i.e. that being orthogonal to Ak is the same
as being parallel to Ãk. This is why Ãk is called the dual of Ak.

By normalization, Ak can always be written as Ak = λa1 . . . ak, where the ai

are orthogonal unit vectors. Extending this set to an orthonormal set a1, . . . , an

creates an orthonormal basis for G1. We see that a1 . . . an = I, and that
I−1 = an . . . a1. Thus

Ãk = AkI
−1 = ±λak+1 . . . an

But Ak
⊥ = ak+1 . . . an, so it is clear that Ãk = Ak

⊥.

3.5.10 The Meet Product and the Subspace Algebra on G

The meet product, or dual outer product, is defined so that

Ã ∨B = Ã ∧ B̃

A ∨B = (Ã ∧ B̃)I

In words, the meet of A and B is calculated by taking the outer product of
their duals, and then taking not the dual, but the inverse dual of the result.

The duality operator is fundamental to geometric algebra, in that it relates
the subspace Ak defined by Ak to its orthogonal complement Ak

⊥in an algebraic
way, namely as

Ak
⊥ = Ãk
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The outer product, in this view, acts as the subspace sum, for if Ar = a1 . . . ar

and Bs = b1 . . . bs are blades for which Ar ∧Bs 6= 0, we have that the subspace
spanned by Ar ∧Bs is the sum of the subspaces spanned by Ar and Bs:

Ar ∧Bs = Ar + Bs

This is clear, as Ar ∧Bs 6= 0 means that all the vectors a1, . . . , ar, b1, . . . , bs are
linearly independent.

The meet product, on the other hand, formalizes subspace intersection.
Thus, if Ar and Bs are blades that together span the space (this means that
Ãr ∧ B̃s 6= 0), the meet Ar ∨Bs spans precisely the intersection of the spans of
Ar and Bs:

Ar ∨Bs = Ar ∩Bs

This is shown using the previous equalities as follows (note that AI = AI−1

and that Ãr ∧ B̃s 6= 0):

Ar ∨Bs ≡ (̃Ar ∧ B̃s)I = Ãr ∧ B̃s

⊥
=

(
Ãr + B̃s

)⊥
=

(
Ar

⊥ + Bs
⊥
)⊥

= Ar ∩Bs

3.6 Applications

We now turn to some applications of geometric algebra.

3.6.1 Projections

Let Ak be a k-blade and b be a vector with the decomposition b = b⊥ + b‖ with
respect to Ak. Recalling the equations 3.7 and 3.12, we see that

b‖ = b‖AkA
−1
k

= (b‖ ·Ak)A−1
k

= (b ·Ak)A−1
k

and

b⊥ = b⊥AkA
−1
k

= (b⊥ ∧Ak)A−1
k

= (b ∧Ak)A−1
k

so that b‖ and b⊥ can be easily calculated using b and Ak. In fact, the above
motivates the definition of projection on Ak as:

PAk
(b) = (b ·Ak)A−1

k

and the rejection from Ak as

P⊥
Ak

(b) = (b ∧Ak)A−1
k

so that b = PAk
(b) + P⊥

Ak
(b) is the decomposition of b into components parallel

and orthogonal to Ak.
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3.6.2 Planes and Lines

From the properties of the outer product, we know that for any k-blade Ak,
a∧Ak = 0 precisely when a lies in the k-volume defined by Ak. For a vector b,
we see that the equation

x ∧ b = 0

defines the line spanned by b. The equation (x − a) ∧ b = 0 defines the line
parallel to b, going through a. And the equation for a plane is

(x− a) ∧A2 = 0

Note that those equations are independent of the dimension of the space.
The shortest distance from the origin to a plane on the point a defined in

this way is described by the vector a⊥ = P⊥
A2

(a), which is that part of a which is
orthogonal to A2. Thus the vector d describing the distance from an arbirtary
point p to the plane is

d = P⊥
A2

(a− p) = ((a− p) ∧A2)A−1
2

the magnitude of which is the distance between the plane and the point.

3.6.3 Complex Numbers

Let A = a1a2 be any 2-blade of unit length, i.e. |A|2 = a2
1a

2
2 = 1. Then note

that
A2 = a1a2a1a2 = −a2

1a
2
2 = −1

and, for scalars x1, x2, y1, y2

(x1 + y1A)(x2 + y2A) = x1x2 − y1y2 + (x1y2 + y1x2)A

Thus, the subalgebra generated by {1, A} is isomorphic to the complex numbers,
with A playing the role of the imaginary unit i. This way, all “imaginary”
qualities of i suddenly disappear, and the complex numbers are given a firm
place in geometry.

This subalgebra naturally operates on the vector space. Let v be any vector
in A, say v = xa1 + ya2. Then

Av = −ya1 + xa2

effectively rotating v by 90◦. Thus, multiplication with the multivector z =
cos α + A sinα gives

(cos α + A sinα)v = (x cos α− y sinα)a1 + (x sinα + y cos α)a2

which can be verified to mean rotation of v by the angle α = arg(z). Thus all
rotations in a plane can be described using multivectors of the above form.
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3.6.4 Reflection

Picking a unit vector u, the operator

Uu(x) = −uxu

reflects vectors in the plane orthogonal to u. To see this, decompose x = x⊥+x‖,
orthogonal and parallel to u. We note that ux‖ = u · x‖ = x‖ · u = x‖u, and
ux⊥ = u ∧ x⊥ = −x⊥ ∧ u = −x⊥u. We get:

Uu(x‖ + x⊥) = −ux‖u− ux⊥u

= x⊥ − x‖

Thus, U reflects the component of x parallel to u.

3.6.5 Rotation in Three Dimensions

We know that a rotation in three dimensions is the composition of two reflec-
tions5. Thus every reflection can be written in the form Uu◦Uv for some vectors
u and v. We note that

Uu ◦ Uv(x) = uvxvu

Letting A = uv = u · v + u ∧ v, we see that any rotation can be described by
RA, where

RA(x) = A†xA

The multivector A is a combination of a scalar and a bivector. It is easy to
show that any such multivector describes a rotation. The space of all such
multivectors has the basis

{1, e1e2, e2e3, e3e1}

Setting i = e1e2, j = e2e3, and k = e3e1, we note that

i2 = j2 = k2 = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j

ijk = −1

and we see that we have resurrected the quaternion theory of rotation, developed
by Hamilton in the 19th century. This discussion generalizes to spinor theory,
which is widely used in quantum physics.

5This can of course be proven in geometric algebra as well. See [11], where the theory of
roations is more fully developed.
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3.6.6 The Vector Cross Product

In an algebra where the vector space has dimension three, we can introduce the
following vector operator:

a× b = ã ∧ b

The result is a vector since the dual of a bivector in three dimensions is a vector.
In fact, we know it is a vector orthogonal to the plane of the bivector. Noting
that aI = Ia for any vector a, and so A2I = a1a2I = Ia1a2 = IA2 for any
2-blade A2 , we get the length of the vector a× b by

|a× b|2 = |(a× b)2| = |(a ∧ b)I(a ∧ b)I| = |(a ∧ b)2I2| = | − (a ∧ b)2| = |a ∧ b|2

Thus, the length of this vector is the area of the parallelogram spanned by a
and b. The orientation of a× b is clear by noting

e1 × e2 = e1e2e3e2e1 = e3

The conclusion is that the cross product defined here is identical to the ordinary
cross product.

3.6.7 Projective Geometry

Having explored some of the uses of geometric algebra within analytical geom-
etry, we now turn to a different geometric interpretation of geometric algebra:
projective geometry. We assume the vector space G1 of G has dimension n, and
make the following definitions:

1. A point is a one-dimensional subspace of G1.

2. A line is a two-dimensional subspace of G1.

3. A k-plane is a (k + 1)-dimensional subspace of G1.

This amounts to the classical subspace interpretation of projective geometry.
But there is a twist: just as a vector defines a point (the subspace which is the
span of the vector), a 2-blade A2 defines a line, namely A2, the two-dimensional
subspace defined by A2. In general, a k-blade Ak defines a (k − 1)-plane Ak.

The advantage of the k-blade representation is clear when we list some
algebraic properties interpreted as projective geometric relations:

1. Two points p, q are the same if p · q = pq. Two k-planes Ak and Bk are
the same if Ak ·Bk = AkBk.

2. Two points p, q define a unique line p∧ q. A point p is on a line A if and
only if p ∧A = 0.

3. Two lines A and B intersect in a point if and only if A ∧ B = 0. In the
case of a three-dimesional algebra (P2), their intersection is simply A∨B.

4. Three points are collinear if and only if p ∧ q ∧ r = 0.
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5. In P2, three lines are concurrent (meet in a single point) if and only if
(P ∨Q) ∧R = 0.

Continuing in this fashion, all concepts, theorems and proofs of projective ge-
ometry can be formulated in geometric algebra, enabling algebraic proofs and
constructions without reference to coordinates. In this way, the gap between
the algebraic and synthetic approaches to projective geometry is finally closed.
A detailed treatment is given in [18]. An algebraic unification of projective,
affine and metric geometry using geometric algebra is given in [30].

3.6.8 Other Applications

Other applications of geometric algebra to mathematical systems include a
coordinate-free reformulation of linear algebra and and the theory of multi-
linear functions. The benefits of this approach are detailed in [13] and [14].

The theory of Lie groups, spinor algebra and tensor algebra can also be
formulated in geometric algebra. This promises to have important applications
in physics.

3.6.9 Conclusions

It should be obvious from this quick overview that geometric algebra provides
a powerful and versatile framework for most of analytic geometry, and that
it provides a much more consistent and intuitive theory than what is usually
presented to the mathematics students. Using geometric algebra, seemingly
different theories can be described within a single mathematical system. The
implications for the application and teaching of mathematics are far reaching.

3.7 Geometric Calculus

We have thus far only treated the purely algebraic features of geometric al-
gebra. But there is much more to the theory. David Hestenes has pioneered
the development of a Geometric Calculus, which is the application of geometric
algebra to the theories of differentiation, integration and differential geometry.
There is no room to examine geometric calculus here (see, for example, [14],
[11] and [20]), but we note some of the main features:

• A coordinate-free theory of directed integration with all the benefits of dif-
ferential forms, but fully integrated into the vector algebra of the space,
including a coordinate-free directed form of the coordinate-change theo-
rem.

• A coordinate-free formulation of differential geometry.

• A generalization of the Cauchy integral theorem to n dimensions.

• A more general and complete definition of the derivative, finally fully
integrating the curl and the divergence, making possible a formulation of
Maxwell’s four laws as ∂F = J .



Chapter 4

Conzilla

Conzilla is a powerful interactive tool for browsing concept maps, which has
been developed at CID over the past couple of years. To understand the differ-
ence between the printed versions of the map and the online form, this chapter
presents an overview of the most important aspects of conceptual browsing with
Conzilla. A more complete introduction is given in [27].

4.1 Browsing, Viewing and Informing

From a very concrete point of view, there are three main modes of interaction
with Conzilla: browsing, viewing and informing.

Browsing the context means examining the concepts in a map and their
relationships, and switching to view other maps. Each concept is annotated
with textual descriptions that pop up when hovering over it. This is illustrated
in figure 4.1. This way, the user can understand things that may not be im-
mediately evident from the visual information. However, once the intention of
the concepts in the diagram has been made clear, the user is not distracted by
this information, but can rely on the visual information. Associations are also
annotated – an important feature to explain conceptual relationships.

Changing maps is done in one of two major ways. Firstly, each concept
can be hyper-linked to a specific diagram describing it in more detail. So, for
example, when clicking on the concept Definition in the overview map in figure
3.1, you are taken to the definition map in figure 3.16. Secondly, you can jump
to any map where a certain concept occurs. This is illustrated in figure 4.2.
Using these two navigation features, one can explore the space of maps in a
convenient manner.

The concepts are associated with content in the form of images, web pages
and other digital material, such as interactive demonstrations. Viewing the
content of each concept is done by bringing up the popup-menu over a concept.
The different forms of material can then be viewed in an ordinary web browser,
and in fact, any material that can be made available on the web is a candidate
for inclusion as content for a concept. This content can be sorted and filtered
into different aspects. An example is given in figure 4.3.

Each map and each concept can also be annotated with metadata, describing
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Figure 4.1: Pop-up descriptions

Figure 4.2: Surfing to other maps containing the Vector concept.
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Figure 4.3: Sorting the content of Projective Geometry, looking at advanced-
level content under the conceptual aspect (i.e. “what is projective geometry?”).
Clicking on a link to the right, for example “Polar Reciprocity”, opens up a
video describing reciprocity.

such things as author, classification, keywords and other indexing and descrip-
tive information according to the emerging de facto standard for markup of
digital learning resources, IMS/IEEE LOM metadata1. This information can
be seen by choosing the Info menu entry over an item. One biproduct of this
markup is that all maps are easily translated to another language, as seen in
figure 4.4 .

This summarizes the main ways of navigating amongst the concept maps.

4.2 Knowledge Manifolds

The underlying framework behind conceptual browsing is the idea of a knowl-
edge manifold, which we will now present. First introduced by Naeve in [26],
the knowledge manifold is a model for the construction, management and use
of digital learning material that supports inquiry-based explorative learning.

A knowledge manifold consists of knowledge patches, each of which is main-
tained by an individual or group called the knowledge gardener. The patch
contains reusable digital content in the form of knowledge components, such as
multimedial or interactive content, structured and presented from the gardener’s
personal view on the world. The aim of a knowledge patch is to communicate
this personal view in a digital form.

Different patches maintained by different gardeners often overlap, in the
sense that they present personal views of the same concepts or reuse the same
digital material. Together, the patches form a knowledge patchwork that con-
stitute the knowledge manifold. This is analogous to the mathematical concept

1See http://www.imsglobal.org.
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Figure 4.4: The vector map in Swedish.

of a manifold, which is a geometrical space described by overlapping maps in
the same way as an atlas of the Earth does.

In contrast to the mathematical manifold, the patches in a knowledge man-
ifold are usually not coherent. Different gardeners with differing views of the
world may produce incompatible patches. It is one of the principles of the
knowledge manifold design that such incompatibilities should be made explicit.

The concepts and the conceptual relationships in a knowledge patch are
made explicit using UML diagrams like the ones used in this report. But
the knowledge manifold framwork contains more principles, such as support
for conceptual calibration between gardeners, competence profiling, component
archives, personalization, multiple narration and more. See [26, 27].

The Conceptual Web is our name for the technical realization of the knowl-
edge manifold framework which is taking form at CID. It contains a number
of tools, the most important of which is the concept browser. The next section
will present the philosophical background behind conceptual browsing.

4.3 The Concept Browser

As we have seen, conceptual browsing relies on metaphors from the present-day
World Wide Web technologies for navigation. However, the Web in its current
form is not well suited to the task of presenting a conceptually clear view of a
knowledge manifold. The hyper-linked structure of the web presents the user
with a totally fluid and dynamic relationship between context and content,
which makes it hard to get an overview of the conceptual context within which
the information is presented. As soon as you click on a hyperlink, you are
helplessly transferred to a new and often unfamiliar context. This results in the
all too well-known “surfing-sickness” on the web, which could be characterized
as “Within what context am I viewing this, and how did I get here?”



4.3. THE CONCEPT BROWSER 51

In a learning context, the conceptual structure of the content is an essential
part of the learning material. Losing the contextual information of the content
means more than just “surfing-sickness”. It means that you will not be able to
contextually integrate the concepts that you are trying to learn, which is vitally
important in order to achieve an understanding of any specific subject area. In
traditional books, this is achieved by carefully constructing a linear sequence
of material, which is often organized after some taxonomical scheme (which
becomes chapters and sections). This creates a clear sense of conceptual context
of the material in each section, at the expense of making it very difficult to reuse
the material in new contexts, i.e., the context is clear but static. This conceptual
clearness is sadly lacking in the Web of today, which can be characterized as
having a dynamic but unclear context.

A concept browser is a navigational tool that presents a dynamic, hyper-
linked view of a knowledge manifold, but tries to avoid the pitfalls of the current
Web. The fundamental requirements on a concept browser, as described in [27]
are:

1. Separate content from context.

2. Describe each separate context in terms of a concept map.

3. Assign an appropriate set of components as the content of a concept
and/or conceptual relationship.

4. Filter the components through different aspects.

5. Label the components with a standardized data description (=metadata)
scheme.

6. When a content component is a concept map, allow transforming it into
a context by contextualizing it.

Conzilla now conforms to all of these requirements. The hyperlinked, concep-
tually oriented structure you build and browse using Conzilla is what we call
the Conceptual Web. It is a form of hypertext, and lives on top of the current
web, but with a fundamentally different topological metaphor, based on the
framework of a knowledge manifold.



Chapter 5

A Conceptual Web of
Mathematics

The maps presented in this report are part of a larger conceptual web of ge-
ometric algebra, which has been developed in order to experiment with UML
as a conceptual language for mathematics. This chapter reports some of the
lessons learned.

5.1 The Virtual Mathematics Exploratorium

One of the long-term goals of the ongoing work on UML and mathematics at
CID is to build a large conceptual web of mathematics, intended as a virtual
mathematics exploratorium containing pictures, animations, videos, presenta-
tions, interactive material, etc., all organized as a knowledge manifold, and
thus containing a multitude of concept maps describing the subject and the
material. More information can be found at http://cid.nada.kth.se/il and
http://amt.kth.se/matemagi, and the background is given in [29].

5.2 UML as a Mathematical Language

It is now time to analyze the maps that were made of Geometric algebra. We
start with listing the various kinds of diagrams seen so far, along with a dis-
cussion of what the corresponding structure would be in a mathematical text.
Thus far, we have seen the following kinds of diagrams:

• Class diagrams such as the overview in figure 3.1, describing the relation-
ships between concepts in terms of generalization hierarchies and contain-
ment. These diagrams correspond to two structures in mathematical text.
In part, they play a taxonomical role, creating a structural overview. But
they are also an important part of the definition of concepts, which are
often defined in terms of specializations of other concepts, or containment
of them. This is clearer in figure 3.14, where most multivector concepts
in geometric algebra are actually defined.
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• Dependency diagrams, which are a kind of UML object diagrams, show
the logical dependencies between concepts. An example is figure 3.20.
This kind of diagram shows dependencies in a way they are seldom, if
ever, described in mathematical literature, but that is very helpful for
anyone trying to digest the material.

• Activity diagrams, such as figure 3.17, can be used to describe construc-
tions, which are very common in mathematical text (signaled by the use
of imperative verb forms: “Take a vector a...” etc.). The diagrammatic
form is very pleasing as it allows the suppression of uninteresting details
(hiding them within pop-up descriptions or in maps that are linked to)
without loosing contact with them when necessary. The construction can
be delinearized and split up visually in separate parts. It can even be
reused in other, larger constructions by simple hyperlinking.

• Object-flow diagrams, such as figure 3.3, can be used to describe functions
and mappings of different kinds.

It should be noted that all the above diagrams contain only UML constructs.
No extra terminology has been introduced. It is, however, very likely that some
additional syntax would need to be introduced.

The kinds of mathematical structures not fully covered by the above dia-
grammatic techniques include

• Proofs. Though most proofs mainly rely on construction, and thus would
be described by activity diagrams, there is definitely a need for expressing
relations such as prerequisite/conclusion, logical equivalence, etc., as such
relations are of very high conceptual value. Most non-trivial proofs would
most certainly benefit from a diagrammatic representation.

• Commutativity diagrams. This is a kind of diagram which is already
present in diagrammatic form in mathematical texts. Finding a way of
presenting them in a UML-compatible way is still an open problem.

The possible added value of a UML-based approach to communicate mathe-
matics, compared to using static text, include:

• Visual overviews, making understanding the context easier.

• Focus on explicit and clear conceptual relations rather than formulas or
other, more low-level relations.

• Compactification of language, summarizing many complex relations in
simple diagrams.

It should be clear from this summary and the examples that UML is a good
candidate for a visual mathematical language. However, the precise advantages
and shortcomings remain to be studied and analyzed. This problem is being
examined in a project in Kista [insert description here].

It is also clear, however, that the features of conceptual browsing provide
important additional value to non-interactive maps. These advantages of con-
ceptual browsing will now be discussed.
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5.3 Using Conceptual Browsing to Communicate Math-
ematics

What benefits can you expect from a knowledge manifold-based approach to
communicate mathematics? There are several important properties of concept
browsers that enhance the expressiveness of UML diagrams:

• A clear separation of the conceptual context and the conceptual content.
Examples and explanations are given and suppressed at the users request,
providing a much more flexible environment.

• The many forms of content. The need for a multitude of different kinds
of examples of the same concept, focused on different aspects and on
different levels of knowledge, can be satisfied.

• The high degree of connectivity. All occurences of a given concept are im-
mediately available, providing many different views of the same concept.
Concepts can link directly to more detailed explanations, providing quick
connections in any context to the details of the concept, without having
to clutter the presentation with those details.

• The feeling of exploration. As all concepts have natural and interesting
links to related material, that is not necessarily directly related to the
current curriculum, the user has the freedom to explore the surroundings
of a concept without either getting lost or getting hindered by the system.

• The creation, reuse and integration of personal material in the form of
maps and content. Creating personalized maps describing concepts is an
important step in the understanding of a subject. Making it possible
to reuse existing material, linking to existing content etc. would greatly
enhance the value of this process.

As this summary hopefully indicates, conceptual browsing is a potentially cen-
tral element in the design of an interactive learning environment with the fea-
tures described in the introduction.
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Conclusions

The purpose of this thesis has been twofold: to show how geometric algebra
can be used as a universal language for geometry and physics, and to show
how conceptual modeling with Conzilla can be used to present a mathematical
subject.

Geometric algebra still has ways to go before it is accepted as a fundamental
part of any mathematician’s or physicist’s set of tools. It is clear that geometric
algebra has the potential to revitalize analytic geometry not only for practition-
ers, but for students of the subject as well. With the help of geometric algebra,
analytic geometry can be introduced gradually in a geometric fashion, without
the need for matrix algebra to do calculations. The strong connection with
geometric intuition, for both euclidean, non-euclidean and projective geometry,
is perhaps the most important advantage of geometric algebra. over traditional
approaches to analytic geometry.

Although presented in a fairly sketchy way, it should be clear that con-
ceptual modeling and conceptual browsing offer interesting possiblities for the
presentation of mathematics. It offers a conceptually oriented, non-formal en-
try point into the subject at any level, something that is hard to reproduce in
another medium. We are taking conceptual modeling as a starting point for
the design of the learning environments of the future. Many of the possibilities
created by the conceptual modeling techniques remain to be explored.
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report TRITA-NA-D9709, Stockholm: KTH. http://cid.nada.kth.se/
pdf/cid_18.pdf

[26] Naeve, A. (1997), The Garden of Knowledge as a Knowledge Manifold –
a conceptual framework for computer supported subjective education, Cen-
tre for user-oriented Information technology Design (CID-17), TRITA-NA-
D9708, Stockholm: KTH. http://cid.nada.kth.se/pdf/cid_17.pdf



BIBLIOGRAPHY 59

[27] Naeve, A. (1999), Conceptual navigation and multiple narration in a knowl-
edge manifold, Centre for user-oriented Information technology Design
(CID-52), TRITA-NA-D9910, Stockholm: KTH. http://cid.nada.kth.
se/pdf/cid_52.pdf

[28] Naeve, A. (2001), Begreppsmodellering och matematik, Centre for user-
oriented Information technology Design (CID-109), TRITA-NA-D0103,
Stockholm: KTH. http://cid.nada.kth.se/pdf/cid_109.pdf

[29] Naeve, A. (2001), The Work of Ambjörn Naeve within the Field of
Mathematical Education Reform, Centre for user-oriented Informa-
tion technology Design (CID-110), TRITA-NA-D0104, Stockholm:
KTH. http://www.amt.kth.se/projekt/matemagi/mathemathics_
educational_reform.doc

[30] Naeve, A. & Svensson, L. (2001), Geo-Metric-Affine-Projective Unifica-
tion, in Sommer (ed.), Geometric Computing with Clifford Algebras, Ch.
5, pp.105-126, Springer.

[31] Nilsson, M. and Palmér, M. (1999), Conzilla Towards a Concept Browser.
Technical report TRITA-NA-D9911, Stockholm: KTH. http://cid.
nada.kth.se/pdf/cid_51.pdf

[32] Nilsson, M (2000), The Conzilla Design – The definitive refer-
ence, http://conzilla.sourceforge.net/doc/conzilla-design/
conzilla-design.html

[33] Novak, J. D. (1991), Clarify with concept maps: A tool for students and
teachers alike. The Science Teacher, 58(7), pp. 45-49.

[34] Novak, J. D. (1993), How do we learn our lesson? : Taking students
through the process. The Science Teacher, 60(3), pp. 50-55.

[35] Novak, J. D. (1985), Metalearning and metaknowledge strategies to help
students learn how to learn. In West, L., Pines, A. (eds.) Cognitive structure
and conceptual change, pp. 189-207, New York: Academic Press.

[36] Novak, J. D., The Theory Underlying Concept Maps and How To Con-
struct Them. Available online: http://cmap.coginst.uwf.edu/info/.

[37] OMG, The Object Management Group (2000), Unified Modeling Language
(UML) 1.3 specification, OMG specification formal/00-03-01, http://
www.omg.org/.

[38] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991),
Object-Oriented Modeling and Design, New Jersey: Prentice Hall.

[39] Rumbaugh, J., Jacobson, I., Booch, G. (1999), The Unified Modeling Lan-
guage Reference Manual, Addison Wesley Longman Inc.


