
Mikael Lindkvist

CID, CENTRE FOR USER ORIENTED IT DESIGN

CID-189 ISSN 1403 -0721 Depa r tmen t o f Numer i ca l Ana l ys i s and Compu te r Sc ience KTH

A State Sharing Toolkit for Interactive Applications

Mikael Lindkvist

A State Sharing Toolkit for Interactive Applications
Report number: CID-189

ISSN number: ISSN 1403 - 0721 (print) 1403 - 073 X (Web/PDF)
Publication date: April 2002

Reports can be ordered from:

CID, Centre for User Oriented IT Design
NADA, Deptartment of Numerical Analysis and Computer Science
KTH (Royal Institute of Technology)
SE- 100 44 Stockhom, Sweden
Telephone: + 46 (0)8 790 91 00

Fax: + 46 (0)8 790 90 99

E-mail: cid@nada.kth.se
URL: http://cid.nada.kth.se

A State Sharing Toolkit

for Interactive Applications

Mikael Lindkvist

Today there exist several interesting examples of Networked Virtual
Environments, such as collaborative e-learning environments, military
simulations and multi player games that have had an outstanding success. Even
though these systems serves have been proven useful for their purpose, however,
there are not many pieces of the existing applications that are easy to reuse. In this
thesis I present a formal model of the data sharing used for interactive
applications and compare it to the models used in traditional distributed systems. I
present Streep, a state sharing toolkit for interactive applications, which I hope
can serve as a building block for the Net-VE developer.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 2 -

Table of contentsTable of contentsTable of contentsTable of contents

1. Introduction, background and motivation ..3

2. Method ..8

3. Design issues ...9

4. Implementation issues ...16

5. Current usage situations ...26

6. Future Work...30

Appendix A - Streep programming tutorial ..32

Appendix B – Streep reference manual ...34

References...73

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 3 -

1. Introduction, background and motivation1. Introduction, background and motivation1. Introduction, background and motivation1. Introduction, background and motivation

Paradigms in distributed computing
I would like to distinguish tree conceptually different ways for computer

programs to communicate. For the discussion I use the terms ‘computer
program’ and ‘communication’ here in a very broad sense. The programs that
communicate could be any pieces of code that runs on a computer, and the
communication could take place within a single process, between different
processes on a single computer or in loosely coupled system on the Internet.
However, I call these models message passing, procedure invocation and
shared storage. In the simple case where the communication takes place within
the same computer, these models can be exemplified in the following way.

A good example of message passing is pipes in the UNIIX operating
system, where one process can write a stream of bytes in one end of the pipe
and another process can read them, in the same order as they were inserted, in
the other end. Procedure invocation is when a program makes a call to a library
function, such as opening a file or converting a string to an integer. Shared
storage is when some pieces of code share a common memory are where
someone writes data that someone else reads. An example of this is the
framebuffer on graphics hardware where a program writes data representing
graphics, and the graphics device displays this graphics on a display.
Depending on the underlying environment, it is often easy to implement one of
these paradigms for a systems programmer, while the application programmer
might prefer a different model. Therefore it is common to implement one
model on top of another. A queue data-structure, for example, can be seen as a
way to implement message passing on top of shared storage.

Now, the challenge is how to implement these models in an environment
where the communication takes place over large physical distances, such as on
a LAN or on the Internet. In this environment the message passing paradigm is
clearly the most natural to implement, and the TCP/IP protocol suite is an
excellent example of such as implementation. There are also many
implementations of procedure invocation on top of TCP/IP, such as RPC1 and
CORBA2. It is hardly surprising that while the TCP/IP is very general and well
suited for most applications, packages with a higher level of abstraction such as
those mentioned above usually have different characteristics. Which package to
use is often a critical choice for a software-engineer, and depends on the needs
of his* application. When it comes to implementing shared storage in a
distributed environment the design choices are even more diverse. The concept
of having shared storage implemented on top of message passing is know as
distributed shared memory and is an area of research related to distributed
systems. Many such systems that have been developed are intended to be used
for parallel computations. They are usually designed with robustness as an
important goal, and hence they use secure communications and other things

* “He” should be read as “he or she” and “his” should be read as “his or her”
throughout this thesis.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 4 -

that impose a large degree of overhead. These characteristics make them less
well suited for highly responsive, interactive applications. Streep is an attempt
to design a shared memory system that is better suited for such applications.

As a part of the background I will present some algorithms from the
distributed systems community that deals with distributed shared memory and
discuss some models used for distribution in networked virtual environments. I
will also present a case study of a traditional shared memory system and argue
that its model is not well suited for interactive applications.

Theories used in distributed systems
Much research has been done on traditional distributed systems. Here I

present some of them that are related to my thesis. They are all taken from
Tanenbaums book “Distributed operating systems”3.

Centralized vs. decentralized systems
The distributed systems community often talks about the importance of

having decentralized systems. The reason for this is to avoid the single point of
failure problem, i.e. a distributed system should not be designed so that the
crash of one participant causes the whole system to stop functioning. The
implementation such decentralized systems often impose a large degree of
overhead. Also, in reality attempts to implement such systems may sometimes
lead to a multiple point of failure problem, i.e. the whole system fails as soon as
any participant crashes. Therefore, many systems use a central server, or
coordinator, to manage the other participants.

Mutual exclusion
Systems involving multiple processes are often most easily programmed

using critical sections. When a process wants read or write shared data it first
enter a critical region to achieve mutual exclusion and ensure that no other
process will access the data at the same time. Tanenbaum presents three
methods for achieving mutual exclusion in a distributed system, a centralized
algorithm, a decentralized algorithm and an algorithm based on a circulating
token.

Figure 2.1 shows a comparison of the three methods when it comes to the
number of network messages that need to be transmitted when a participant
wants to enter a critical section.

Algorithm
Messages per

entry/exit
Delay before entry
(in message times)

Potential problems

Centralized 3 2 Coordinator crash
Decentralized 2 (n-1) 2 (n-1) Crash of any process
Token Ring 1 to inf. 0 to n-1 Lost token, process crash

In addition to these numbers, it should also be noted that in the centralized

algorithm no messages are needed if the host who wants the lock is the
coordinator.

Fig 2.1: Comparison of models for mutual exclusion

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 5 -

Given these values, it can be argued that for an interactive system where the
response time is important the centralized approach is probably the best
solution.

Consistency models for shared memory
The concept of a distributed shared memory is an attempt to abstract out the

actual communication by making it appear to the applications programmer as if
two processes on different machines can access the same memory. Ideally, this
shared memory would work exactly in the same way as if the two processes ran
on the same machine. However, in reality this is very difficult to achieve which
means that the applications programmer need to adapt to certain constraints
when it comes to how his program accesses the shared memory, the consistency
model of the shared memory decides which constraints those are. I will discuss
five of the most common consistency models here.

The first one is known as strict consistency. Using Tanenbaum’s definition,
this model can be described as follows:

Any read to a memory location x returns the value stored by the
most recent write operation to x.

While this definition seem clear an obvious, it is impossible4 to achieve in a
distributed system because it assumes the existence of an absolute global time.
Therefore a slightly weaker model has been formulated, known as sequential
consistency:

The result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program.

This means in practice that while strict consistency stipulates that all
participants should see the memory reads and write exactly when they happen,
in sequential consistency it is enough if all participants see the reads and writes
in the same order. However, if the programmer adheres to reasonable
programming practices, this is enough to provide a transparent distributed
memory.

While sequential consistency is designed to be transparent to the
programmer, one can usually get better performance if one uses a weaker
model known as weak consistency. This model uses special synchronization
variables. The role of the synchronization variable is to make sure that all
participants have the same contents of their local memories, and as soon as a
synchronization variable is accessed the system takes action to ensure this.
When a participant wants to access the memory, he first has to lock it by
accessing one of these synchronization variables to ensure that he has the most
updated version of the memory contents. When he is done reading and writing,
he accesses the synchronization variable again to make sure that that all other
participants are aware of the updates.

In weak consistency, the memory contents are “brought in” when they are
needed by a participant, and “pushed out” when a participant is done with
them. One can see that it would be enough to just perform one of these
operations if all participants agree on which one. The contents could either be

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 6 -

requested when needed, i.e. on the entry of a critical section, or they could be
sent out as soon as they are modified at the end of a critical section. This gives
us the two last consistency models, entry consistency and release consistency.
It should be noted that release consistency gives better performance if there are
more reads than writes to the memory, while entry consistency has the reverse
properties. Since reads are usually more common than writes, release
consistency the more commonly used model where performance is critical.

A case study: Linda
The Linda5 system provides processed on multiple machines with a highly

structured distributed shared memory. The concepts of Linda can easily be
added to existing programming languages, and several implementations exist
for languages such as C and Fortran. The central idea of Linda is a shared
abstract tuple space. The programmer has a set of primitive operations that can
be used to insert, remove and modify the tuples in the tuple space. Each tuple
resembles a structure in the C language, in the way that it has a number of
fields where each field is of a primitive data type, such as integers, long
integers and floating-point numbers. A tuple-field can also hold more complex
variables such as arrays and strings. Fig 2.2 shows examples of Linda tuples.

The operations that can be performed on these tuples are the out and in
operations. The out operation is used to put a tuple in the tuple space, as in

out(“abc”, 1, 2)

The in operation is used to search the tuple space for a tuple matching a
given pattern. For example, the operation

in(“abc”, 1, ?i)

would search the tuple space for a tuple where first field is a string that has
the value “abc” and the second field is an integer with the value 1. The third
parameter in this case is not used to do any matching, but instead the contents
of the tuple’s third field would be put into the variable i. Assuming that an out
operation like the one above has been performed, i would contain the value 2
after the operation. When an in operation is performed, and a matching tuple is
found, that tuple is removed from the tuple space. If no matching tuple is
found, the calling process is suspended until such a tuple is inserted by another
process.

The fact that the process blocks this way is central to Linda and is very
useful in many cases. It can be used to implement semaphores for critical
sections as well as atomic transactions, for example.

The Linda system is built on a neat and simple model and it is easy to see
why it is widely used in parallel systems for scientific calculations. However,
many concepts that make Linda useful for such systems makes it unattractive
for the development of interactive systems. For example, as soon as a

(”abc”, 1, 2)
(”counter”, 10)
(”name-1”, ”Greg Lim Joon”)

Fig 2.2: Linda tuples

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 7 -

participant wants to know the current value of a tuple, it has to explicitly ask
for it, thereby generating a request to the other participants and waiting for a
result. There is no method in the Linda model that allows a participant to
“push” out a modification to the other participants. The fact that processes are
suspended, which is useful for non-interactive systems, is another thing that is
unattractive in an interactive system.

Distribution in networked virtual environments
The distribution models used in Networked Virtual Environments are less

investigated and formalized than those used in other distributed systems.
Michael Zyda points out that while there exist several monolithic Network
Virtual Environment systems that have proven to be useful for their purpose,
there are not many pieces of those systems that are easy to reuse. Hence,

The current focus in the net-VE arena is on the development of
toolkits that simplify the development of net-VEs and provide a
standard framework for net-VE application development6.

Therefore, most Net-VE systems described in literature use a quite low-level
approach. The SIMNet7 environment, developed for the US Department of
Defense, is a good example of such a system. The networking architecture in
SIMNet is build around highly specialized messages being broadcasted at
regular intervals on a network. There are also Net-VE systems that build on
traditional ideas from distributed computing, such as the DIVE8 system,
sometimes with low performance and lack of flexibility as a result.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 8 -

2. Method2. Method2. Method2. Method

Choice of method
As stated earlier, my goal has been to create a useful and intuitive library for

dealing with the network related problems related to the development of Net-
VEs. I do not want it to depend on external libraries or tools, and I do not want
the user to depend on external tools or pre-compilers in order to use the library.
I want the library to be accessible from C, with the possibility to extend it to
C++ and Java. The underlying principle of the library should be to have a
replicated database that can be updated using reliable or unreliable network
transport protocols. While these goals and this principle seem clear, there are
many theoretical and practical issues that remain. What makes the library
intuitive to work with? How do I ensure its usefulness?

I decided to make a list of issues that I needed to solve, and then search for
earlier work that I could analyse to find solutions to these issues.

Evaluation
Given the goal of my thesis, the evaluation of the work is best done by

looking at its usefulness for an application developer of networked interactive
systems. I feel very satisfied to find that today there are several applications
that use Streep for their communications in different ways, as described in
chapter 6.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 9 -

3. Design issues3. Design issues3. Design issues3. Design issues

Earlier Work
I found three libraries that in some sense had a similar design to what I

would like to create. The first library is the Java Shared Data Toolkit9 (JSDT)
developed by Sun’s JavaSoft division. The second one is the CAVERNSoft
G210 library developed by Jason Leigh et al. at the University of Illinois at
Chicago. The third one is the Diverse Toolkit11 (DTK) developed at Virginia
Polytechnic Institute and State University. I compare these libraries with
respect to some issues that I feel are important and make them useful and
intuitive to work with.

I have also investigated some other libraries, systems and protocols that deal
with state sharing and shared memory. Although their goals might not always
have been the same as mine, they have many interesting aspects that have
inspired me in my work. These include the Virtual Reality Transfer Protocol12,
Repo-3D13, Shastra14 and the protocol used in the games Half-Life and Team
Fortress15.

Design issues
Connection and deployment

Since a distributed system by nature runs on several computers, it is often a
non-trivial problem in itself how the system should be started. In the case
where the system is decentralized, one way to do this is to use a nameserver
where all participating applications register as they are started. Hence, each
application need to be configured with the address of the nameserver and the
nameserver itself needs to be configured. Since this has to be done at the user
level, it is often a tedious and error prone task. If the system is centralized this
is a bit easier since there is a natural rendezvous point, namely the server,
which all applications can contact. This is an argument motivating why my
system is centralized, despite the single point of failure problem. I was happy to
see that the three other libraries also used a centralized approach.

When I had decided that the system should be a centralized, i.e. have a
central server, I had to decide what a “server” actually means in this context. I
thought of two possible approaches here. I could either provide functions in the
library that let the programmer create a server, or I could provide a generic
standalone server program and just provide library functions that let the
programmer connect to that program. Both approaches have pros and cons, of
course. A standalone server might be easier to get started with for people new
to the library, but the other approach offers more flexibility. I found that one of
the libraries, DTK, used a standalone server while the other two used the
approach to let the user create the server himself. I decided to use a hybrid
approach where both provided functions in the library to create a server and
also a small program that used those functions to create a standalone server.

Information about participants and security
Streep does not include any mechanism to receive information about the

participating hosts. I avoided putting such a mechanism into the library since it

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 10 -

can easily be layered on top of it, for example by having a shared memory
block where each participant register themselves by putting their name and ip
number.

I also avoided the issue of security. While it would have been easy to
implement a simple security scheme using password identification and per-
block access control lists, for example, such a scheme would not have been
very secure unless it would have been used together with encryption, which I
feel is beyond the scope of my thesis.

Event processing
As all network programming is somewhat asynchronous in nature, the issue

of how to handle the event processing in an intuitive way is very important. I
saw two different main directions of approaching this problem. The first
approach was to make the library multi threaded internally, and to let a separate
thread handle all the incoming network traffic. The second approach was to
include an event processing function that the programmer has to call at regular
intervals to process the incoming messages. The libraries that I analyzed used
both approaches; JSDT and DTK are internally multi threaded while
CAVERNSoft uses explicit event processing methods. I decided to use the
latter of the methods since I did not want to make my library dependent on an
external threading library. Having made this design decision a mechanism to
deal with diversity in bandwidth and computer power was needed. How can
one deal with the situation that one participant has a fast processor that sends a
lot of data while another participant has a processor that is not fast enough to
deal with all the data? Using the approach with an explicit event processing
function, this could give rise to two unfortunate scenarios. Firstly there is a
possibility that the processing function is not called often enough by the
receiving host, leading to a growing queue of unprocessed network messages.
In an attempt to avoid this possibility one might be tempted to always process
all the queued network messages. This is not possible, however, since the
queue might grow as a message is processed, leading to the situation where the
application is stuck doing nothing else than processing network packets. To aid
the programmer to avoid these situations, I let the event processing function
take two parameters, one wait timeout parameter and one read timeout
parameter. The wait timeout parameter specifies the maximum time to spend
waiting for data to arrive. If no data are received within that interval, the
function will return without doing anything. If data are received, the function
tries to receive all that data, but it does not spend more time than specified by
the read timeout parameter doing so.

Creating and disposing memory
The straight forward method for creation and deletion of memory blocks is

to have one function, malloc, that allocates a memory block on the heap, and
another one, free, that is used to free memory on the heap. This works well on a
system that is supposed to run in a single thread on a single computer. In a
distributed system where several participants can allocate and free memory,
however, things are more complicated. Consider, for example, the scenario
where several participants have requested references to the same shared
memory block, and one participant decides to free that memory. How should
this event appear to the other participants? One option is to have the memory

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 11 -

block removed from all participants’ memories as soon as one participant frees
it. Using this method there might be a possibility that a participant is not aware
of the fact that another participant has deleted the memory block and therefore
continues to access the memory, most likely leading to a page fault. Another
option is to associate an internal counter with each memory block. Each time a
participant request a reference to the block, this counter is incremented by one
and each time a participant frees the block the counter is decremented. While
this scheme is more robust, it still has problems since each memory block has a
name associated with it. If a participant frees a memory block with a given
name, he would expect it to be possible to allocate another block with the same
name. In the scheme where counters are used, this would not be the case. To
solve this issue I introduced a concept of valid and invalid blocks. When a
participant frees a block it is invalidated, but not entirely removed from
memory. When a block is invalidated, it is not possible to get new references to
the block, but participants that already have references can still continue to use
the block. All participants will also get an event message so that it is possible to
see if another participant has invalidated a memory block.

Getting reference to existing shared memory
An issue related to the creation and disposal of shared memory blocks is the

method used to get a reference to an existing block. I saw one potential
problem here, namely that when a participant requests such a reference he
would expect the memory block to have valid data content. This may not be the
case if the block is newly allocated and the participant that created it has not yet
written any data there. In this case the contents of the memory would be
garbage, something that might be difficult to detect by the requesting
participant since there are no general way to distinguish valid data from
garbage data. I therefore added the possibility to lock the memory as it is
allocated, and also functionality so that the requesting participant can not get a
reference to the block until it is unlocked.

Local reference
There are several possible options when it comes to how a local reference

should look to the programmer. It could be an opaque object, an integer, or a
text string. All of these require explicit read and write operations to access the
data. It could also be a simple memory pointer, enabling the programmer to
access the data in the same way as local memory. All methods have different
pros and cons. To access the data as local memory is convenient, but it makes
references to other blocks difficult. A memory pointer that points to an address
in the memory of one participating host is not very useful to another host. To
access the data using integers might lead to name-space problems. If one host
creates a block and gives it the key 1234, for example, another host might want
to create a block with the same key and be confused when it is not possible.
Text strings are better since they automatically have some meaning coded in to
them. If a host creates a block called “avatar_positions” when it deals with the
creation of avatars for a shared virtual reality system, it is less likely to conflict
with blocks that are created for other purposes. However, text strings take more
space than integers and are variable in size, which make them more difficult to
deal with efficiently.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 12 -

Given the different characteristics of the different method it is probably a
good idea to use combinations to get good performance and at the same time a
system that is intuitive to work with. This is the case in the in the libraries that I
have analysed. JSDT uses a combination of opaque objects and text strings.
When an object is created it is given a textual name that serves as an identifier
which is used to get references to the object from other hosts. The access to the
data is made using the object ByteArray. The functions that are used to create
and get references to shared objects both return an instance of such an object. A
similar method is used by DTK. When memory is allocated it is given a name
that is used as an identifier to get references to the memory. The access to the
memory is made using a dtkSharedMem object. CAVERNSoft uses a slightly
different approach. Here the programmer has to explicitly supply a name each
time he wants to access an object.

I decided to use a combination of text strings, integers and memory pointers
to refer to the objects. When objects are created the programmer supplies a text
string that serves as an identifier for the memory block. This identifier can be
used to get a reference to the block from another host. The function that creates
a block and the function used to get a reference to an existing block both return
a memory pointer that can be used to access the block’s data. When a block is
created the system assigns a 32-bit integer that is not visible to the programmer.
This integer is used internally to identify the block when it is sent in network
packets.

Sending and receiving updates
The issue of how updates should be sent and received is an important

transparency-efficiency trade off that very much affects the usefulness of a
shared memory system. In traditional systems transparency has been very
important, but in systems where the shared memory is updated at interactive
rates a programmer would probably favor efficiency and control over
transparency. Analyzing the aforementioned libraries I found that they used a
similar philosophy, which lead to the decision of having an explicit notification
function that the programmer calls each time a memory block is changed and
its contents should be sent to the other participants.

Protocol selection and subscription
Two related issues are the methods used to select what underlying protocol

that should be used to communicate memory block updates, i.e. reliable of
unreliable protocol, and how a participant should choose what memory blocks
it is interested to receive updates for. I decided to solve both these issues by a
concept called channels, inspired by concepts found in the JSDT. When the
server is created it is passed information about what channels that should be
used. The current implementation includes a reliable channel implemented on
top of TCP, and two unreliable channels implemented on top of UDP, one
using point-to-point communication and one using multicast. The programmer
can choose any number of channels to be set up, and each participant can
choose what channels it is interested in. These channels can be used both for
protocol selection and subscription in an application specific manner. In a
shared virtual environment, for example, separate channels could be used for
each room in the environment. As a user enters a room, his client would
subscribe to the channel for that room. The channels can also be used to deal

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 13 -

with variations in bandwidth. An application could open two channels to be
used for the same data, for example to deal with avatar position updates. One of
the channels could be used to send updates 2-5 times a second while the other
one could be used to send updates at a higher frequency, maybe 50 times a
second. The application could then be configured to listen to different channels
depending on if the user has a modem or a local area network connection.

Consistency control
While consistency control is often considered to be the most important issue

in many distributed shared memory systems, it can be argued that it is not quite
as important for a library that has the same intended application areas as Streep
has. However, there are possible situations where the programmer would like
consistency to be ensured. Such a situation could be the maintenance of a list of
participants for a shared application. For those situations I included mutual
exclusion locking functionality, with the possibility to explicitly lock and
unlock shared memory blocks, thereby effectively implementing release
consistency.

Serialization
If two participants run on machines with different

byte order, such as a Macintosh and a PC, care has to be
taken that data structures are correctly serialized. In C
and C++ there is also another potential problem since
structures are aligned for better performance. The
structure in figure 3.1, for example, contains 5 bytes of
data but the size in memory is usually 8 bytes since the
integer is aligned to a four byte boundary. How structure
fields are aligned might also differ depending on the compiler. I would like to
have a mechanism for the programmer to describe the data-structures used so
that the system can do this serialization as transparently as possible.

Java has ways to obtain information about what fields an object contains,
using the .getClass() method and so on, which makes this serialization
really neat and transparent. Hence, JSDT does not have this problem.
Unfortunately things are not that simple in C and C++. Therefore the
CavernSoft library has a special datapack class, that lets the programmer create
an object and then pack each field of a structure into this object. When all fields
are packed, the programmer can call a method and obtain a pointer to the
serialized data. The DTK leaves the structure serialization entirely to the
programmer. Neither of these schemes appealed to me due to their lack of
transparency, so I searched for other methods to do this.

The Datareel16 system, developed by glNET software, uses a concept called
Interoperable Data Types. The concept is based on C++ and uses special
classes that resembles the ordinary built-in datatypes, like vbINT32 instead of
int. The vbINT32 datatype is a class that contain an array of four characters and
have all arithmetic and assignment operators overloaded to pack a value into
the character array. This way it is possible to use a vbINT32 variable in the
same way as an int variable, but the byte ordering will always be the same
regardless of the underlying architecture. This method also overcomes the
structure alignment problem since characters are just one byte long. While the

struct s
{

char c;
int i;

};

Fig 3.1: A structure
in the C language

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 14 -

concept is neat and transparent, I rejected it
mainly because of two reasons. Firstly it
depends on C++. Secondly, which is more
important, is that even though it is possible to
use a vbINT32 variable in the same way as an
int variable, it is not possible to use a vbINT32
array in the same way as an int array. It would
not be possible, for instance, to pass a pointer
to vbFLOAT array to the OpenGL function
glVertex3f() which expects a pointer to a float array.

There also exist more standardized methods to do structure serialization.
One such method is the Sun XDR17. In this case the programmer writes an
external representation of his structures in a special language that resembles C.
Then he runs this file through a XDR compiler that generates platform-specific
C code to serialize and unserialize the structures. I rejected this method because
I did not want my system to rely on external tools or precompilers because
these are troublesome to integrate with the integrated development
environments commonly being used today.

The method I finally settled with was to let the user specify the data-format
by supplying a string at the creation of each block. The string contains a
sequence of characters like in figure 3.2. For more information about the
internal workings of this method and how I solved the byte-ordering and
alignment issues, see chapter 5.

I later found that this method is similar to a method used by the Transarc
De-Light18 library by IBM.

Late arrival
When a participant joins a session, there might be large amounts of data

residing in the database on the server. In order to avoid long initial waiting
times as a client connects, the client has to explicitly request references to all
data blocks that it is interested in. Similar approaches are used in the other
investigated libraries.

References and hierarchies
Something that one often wants to do is to have one block of memory

referring to another block, in the same way as one often has a pointer in one
structure that points to another structure. This would be useful, for example, in
a shared VR system where each participant is represented by an avatar. In this
case each participant needs to know the positions of the other participants, in
order to render the participants graphical representations. This could be
implemented by having a shared memory area that contains an array of
references to other areas, each representing the data related to one avatar. As a
participant joins the system, his client program inserts a reference into the list.
When he leaves, the program removes that reference.

One elegant and transparent scheme for dealing with such references is
pointer swizzling19. I first read about this technique in the context of the
InterAct20 system, developed at the University of Rochester. The technique
works by converting object pointers to an external representation, for example

c - char (8 bit)
s - short (16 bit)
l - long (32 bit)
f – float
d - double

Fig 3.2: Structure
serialization characters

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 15 -

32 bit integers, before an object is sent over the network. When the object is
received this external representation is converted back into an ordinary object
pointer. This way all references will look like ordinary pointers to the
programmer, which will be both efficient and convenient. The system needs
mechanisms, such as hash tables, to convert pointers to external object
representations and back again.

Since the local reference of an object in my system is a pointer, this scheme
would fit pretty well into the model. At one point in time I also had a
mechanism for pointer swizzling implemented. However, I later decided to
remove it due to its error prone attributes. Since objects can be subscribed and
unsubscribed to dynamically there might be a possibility that a client might
receive a reference to an object without having the object, which would lead to
confusion. Instead references from one object to another have to be more
explicit, for example by including the object’s name.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 16 -

4. Implementation issues4. Implementation issues4. Implementation issues4. Implementation issues

Given the concepts in the previous chapter many practical implementation
issues remain. In this chapter I discuss the different decisions I made regarding
this implementation. My implementation exposes a C API to the programmer
containing some 30 functions. Even though the API is in C, the actual
implementation is made in C++, mainly to get access to the standard template
library21 (STL) and its efficient dynamic array and mapping classes. Before I
will describe my implementation class by class, I would like to describe some
concepts that are central to many of the classes.

Concepts

Local reference as pointers
As mentioned in the previous

chapter, a local reference to a shared
memory block appears to the user as
an ordinary memory pointer in the
same way as a pointer returned by the
standard malloc function.
However, even though the user sees
and accesses this memory in the same
way as memory allocated by standard
C routines, the system needs to know
more about this memory. For
example, if the programmer issues a
srNotify(p) call, where p is a
reference to a shared memory block,
the system needs to know the size
and the internal key for that memory block. For this purpose the block allocated
internally is actually a bit larger than what the user requests, and this extra
information is stored behind the pointer returned to the user. An allocation
request for a block of say 20 bytes would result in a scenario like that in fig 4.1.

Asynchronous I/O
In low-level network programming using TCP/IP, one has the option of

using either blocking or non-blocking sockets. The difference is that when
reading from a blocking socket, using the recv socket API call, the calling
process will be suspended until data arrives as opposed to the non-blocking
mode of operation where a recv call will have the effect of polling the socket
for data. In traditional, command line UNIX programs, such as ftp, telnet and
rcp, the best option is probably to use blocking sockets since the behavior
closely resembles standard UNIX file I/O. In interactive, graphical applications,
however, the behavior of having the process suspended is not very attractive
and therefore it is possible to use non-blocking sockets and poll for incoming
data at regular intervals. The problem with this approach is that it is not very
operating system friendly, especially if we have many sockets where we expect

20 bytes

Information
used

interanally

This pointer
is returned
to the user

Allocated
memory

Fig 4.1: Local reference to shared data

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 17 -

incoming traffic. A friendlier alternative is to use blocking sockets and the
select API function, which has the effect of waiting for traffic from several
sockets at once. For more information on socket programming, see 22.

 All classes that deal with networking implements the two methods

• GetRelatedSockets(fd_set *set), and

• Process(fd_set *set)

where the fd_set data type is the same as is accepted by the select
socket API function call. This was it is possible to use blocking sockets, and
just make one select call in the srProcess function that can wait for
incoming network traffic in an operating system friendly way, even though
there are many classes that are interested in listening for network traffic.

Blocking and non-blocking operations
The srGetMem and srLock functions, resulting in getrequest and

lockrequest messages, accept the optional flags NOBLOCK and NOQUEUE.
These flags control the behavior to be taken when a client requests a reference
or lock for a memory area that is locked by another client.

The default behavior is for the requesting client to block until the client that
holds the lock has released it. the messages that would be passed between the
server and the client in this scenario can be seen in figure 4.2.

If the NOBLOCK flag is used, however, the client will not block but will
receive an error indication from srGetMem or srLock function and the
request will be queued in the server. When the lock later becomes available, the
requesting client will receive an event about this, like in figure 4.3.

client A client B server

LOCKREQUEST

LOCKRESPONSE

LOCKREQUEST

UNLOCK

LOCKRESPONSE

The request is queued
by the server…

…until the lock
becomes available.

Fig 4.2: Default behavior if two clients request a lock for the same block

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 18 -

The NOQUEUE flag works in the same way as the NOBLOCK, with the
distinction that the request will not be queued; if the lock can not be obtained
immediately it will not be obtained at all. The messages that are passed in this
scenario are shown in figure 4.4.

Control protocol
The control protocol used through the SRConChannel class consists of a

set of network messages. Each message is built up using a number of fields
where each field is one of the possible types 32-bit integers, null terminated
strings or raw data. The messages can roughly be divided into two groups;
messages sent from a client to the server and messages sent from the server to a
client. The possible messages are described below.

client A client B server

LOCKREQUEST

LOCKRESPONSE

LOCKREQUEST

UNLOCK

LOCKRESPONSE

The request is not
queued by the server, …

…and will not obtain
the lock at all.

…the client will
receive a negative
response…

Fig 4.4: NOQUEUE behavior if two clients try to lock the same block

client A client B server

LOCKREQUEST

LOCKRESPONSE

LOCKREQUEST

UNLOCK

LOCKRESPONSE

The request is queued
by the server, …

…and then an event
when the lock becomes
available.

LOCKRESPONSE ASYNC

… the client will
receive a negative
response…

Fig 4.3: NOBLOCK behavior if two clients try to lock for the block

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 19 -

CHANNELINFOREQUEST

The channelinforequest message is sent from the client to the server
to request information about the channels beeing used.

CHANNELINFORESPONSE
int numchannels

string channeltype 0
string channelid 0
string channeltype 1
string channelid 1
.
.
.

The channelinforesponse message is sent from the server to the
client to inform it about what channels are used. The message is sent as a
response to the channelinforequest message.

LOCKREQUEST
int key
int flags

The lockrequest message is sent from the client to the server to request
a mutual exclusion lock for a shared memory block.

LOCKRESPONSE
int key
int blockdatasize
raw blockcontents

The lockresponse message is sent from the server to the client as a
response to a lockrequest message. The key field is zero if the lock could
not be obtained.

LOCKRESPONSE_ASYNC
int key
int blockdatasize
raw blockcontents

The lockresponse_async message is sent from the server to the client
as a response to a lockrequest message if lock request was queued.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 20 -

ALLOCREQUEST
string name
int size
int flags
string format

The allocrequest message is sent from the client to the server to
request the allocation of a new block. The format field contains a data
description string used in the SRSerializer class.

ALLOCRESPONSE
int key

The allocresponse message is sent from the server to the client as a
response to the allocrequest message. If a new block could not be
allocated, i.e. if a block with the requested name already exists in the
repository, the key field is zero.

GETREQUEST
string name

int flags

The getrequest message is sent from the client to the server to request a
reference to a block in the repository.

GETRESPONSE
int key

int size
string format

raw contents

The getresponse message is sent from the server to the client to as a
response to the getrequest message. If the request failed, i.e. no block with
the given name exist in the repository, the key parameter in zero and the rest of
the fields undefined.

GETRESPONSE_ASYNC
int key

int size
raw contents

The getresponse_async message is sent from the server to the client
as a response to the getrequest message if the getrequest was queued.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 21 -

JOINCHANNEL
int channelid

string localpeer

The joinchannel message is sent from the client to the server when a
client wants to listen to a communication channel. There is no response from
the server related to this message.

PARTCHANNEL
int channelid

The partchannel message is sent from the client to the server when a
client does not want to listen to a communication channel any more. There is
no response from the server related to this message.

RELEASE
int key

The release message is sent from the client to the server when a client
releases a reference to a shared memory block, as a result from the
seReleaseMem API call. There is no response from the server related to this
message.

FREE
int key

The free message is sent from the client to the server when a client deletes
a shared memory block from the repository as a result from the srFreeMem
API call. There is no response from the server related to this message, but the
message will lead to an invalidation of the memory block, resulting in an
invalidate message being sent to all clients that currently holds a reference
to the block.

UNLOCK
int key
int size
raw contents

The unlock message is sent from the client to the server when a client
releases a mutual exclusion lock held on a shared memory block. There is no
response from the server related to this message, but the message may result in

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 22 -

a lockresponse or lockresponse_async message being sent to
another client if there are queued lock requests for the block.

INVALIDATE
int key

The invalidate message is sent from the server to the client as a result
of an invalidation process, i.e. if a client has deleted the block from the
repository.

Classes and modules
The implementation is made up by the classes in figure 4.5. I will here

describe the implementation class by class.

srapi
The srapi module contains the exposed user functions. This module contains

one data type, SR, which is used as an opaque object identifying repository
connections. Internally this object is actually an instance of the SRManager
class. Most API functions does little else than cast a SR pointer to a
SRManager pointer and then call a class method. An exception is the
srProcess API function, which operates according to the scheme previously
described under Asynchronous I/O.

Fig 4.5: Implementation class diagram

C modules

SRManager
SRClientManager

SRServerManager

SRRepository

SRChannel

SRChannelTCP

SRChannelUDP

SRChannelMCast

sockwrap

syswrap

SRChannelFactory

SRClientInfo

SRConChannel

SRBlock SRSerializer
srapi

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 23 -

syswrap
The syswrap module contains a number of C functions used to ensure

platform independence of the rest of the code. I have tried to keep the rest of
the source code UNIX conformant, so this module basically contains wrappers
to Windows functions where Windows and UNIX differ, like the
gettimeofday function.

sockwrap
The sockwrap module contains functions to keep all socket operations

patform independent, as well as a couple of utility function to keep the rest of
the code neat and tidy since raw socket programming usually looks quite
messy.

SRManager
The srManager class serves as a base class for the functionality shared by

both a server and a client. Most functions, such as allocation and freeing of
shared memory, can be done on both the server side and the client side. Even
though the effect appears to be the same to the user, the implementation is quite
different in the different situations. When a client wants to allocate memory it
has to send a request to the server while the server can immediately go ahead
and allocate the memory, for example. Therefore this class contains virtual
functions for most functionality provided by Streep, while the actual
implementation resides in the SRServerManager and
SRClientManager classes.

SRServerManager
The SRServerManager class contains server versions of the methods

prototyped in the srManager class. This class also contains a vector of
SRClientInfo instances to keep track of the clients that are connected to the
server.

SRClientManager
The SRClientManager class contains server versions of the methods

prototyped in the srManager class. This class also contains an instance of
the SRConChannel class for communicating with the server.

SRClientInfo
The SRClientInfo class contains information about a client that is

connected to the server, such as the client’s ip-number, and an instance of the
SRConChannel class to communicate with the client.

SRConChannel
The SRConClient class contains an implementation for a control

protocol used for client-server communication. The class has an inbound and an
outbound queue for messages and methods for packing data into messages and
flushing the queues. Each message consists of a 32-bit integer identifying the
message type, followed by the size of the message and the message’s fields.
The possible types of the field are 32-bit integers, null terminated character

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 24 -

strings and raw data.
When raw data is
packed into a message,
there is no size
information packed
together with that data,
so this information is
assumed to be known
by the receiver,
possibly contained in a
field earlier in the
message. To illustrate
the workings of this
class, I included a
simplified version of
the code that packs and unpacks a GETRESPONSE message if fig 5.5. Note that
the PackRaw, UnPackRaw and UnPackString methods does not actually
do any memory copying but rather they increment the current message size and
return a pointer where the data is to be inserted into the message buffer. The
memory copying is left to the programmer for efficiency reasons.

SRRepository
The SRRepository class contains the local repository replication and is

responsible for the creation and deletion of SRBlock instances for each shared
memory block in the repository. This class has two STL map structures to get
references to the blocks, the first one is a <int, SRBlock *> map to look
up blocks by key and the second is a <string, SRBlock *> map to look
up blocks by their names.

SRBlock
The SRBlock class contains information about each block in the

repository. The class has a vector of SRClientInfo pointers used by the
server to keep track of what clients that have obtained references to the block,
and a deque of SRLockInfo instances used for queuing lock requests. These
fields in the SRBlock are only used by the server.

SRSerializer
The SRSerializer class deals with serialization and deserialization of

block contents to be sent over the network. The constructor of the class accepts
a format specification string as described in the documentation of the
srAllocSerializedMem function in appendix B, which is parsed to an
internal byte code representation. The Serialize and UnSerialize can
then be used to convert data to and from a platform independent format.

SRChannel
The SRChannel class serves as a base class for the different types of

channels used for block updates. The class contains code for packing data in
and out of blocks, queues for incoming and outgoing network messages and
methods for creating such messages. The actual code to send those packets is

SRConChannel *con;
SRBlock *block;

con->BeginOutMessage(SRCON_GETRESPONSE);
con->PackInt(block->key);
con->PackInt(block->size);
con->PackString(block->format);
memcpy(con->PackRaw(block->size),block->size);
con->EndOutMessage();

con->GeginInMessage(SRCON_GETRESPONSE);
block->key=con->UnpackInt();
block->size=con->UnpackInt();
strcpy(block->format,con->UnpackString());
memcpy(block->data,con->UnpackRaw(size),size);
con->EndInMessage();

Fig 5.5: Packing and unpacking network messages

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 25 -

implemented in the various channel implementations that inherit from this
class.

SRChannelFactory
A factory to create SRChannel instances of different types.

SRChannelTCP
A channel implementation using reliable communication on top of TCP.

SRChannelUDP
A channel implementation using unreliable communication on top of UDP.

SRChannelMCast
A channel implementation using unreliable communication on top of UDP

and multicast.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 26 -

5. Current usag5. Current usag5. Current usag5. Current usage situationse situationse situationse situations

Since the goal of my thesis has been to create a useful toolkit for the
development of networked interactive applications, and since a large amount of
work has focused on designing a useful and intuitive API, the evaluation is best
done by looking at the applications that has been developed using Streep. I feel
very satisfied to find that today there are several such applications and I will
describe some of them here as well as describe in what way they have used
Streep.

Shared nodes in the VRT toolkit
The Virtual Reality Toolkit (VRT) is a scene-graph library developed by

Stefan Seipel at Uppsala University. An extension to this library was added
using Streep that allowed a user to create shared scene-graph nodes. The
standard way to create nodes in the VRT is to use the function

VRT_Node *VRT_NodeNew(VRT_Node *parent, char *name)

To add networking functionality the following function was added to the
library:

VRT_Node *VRT_SharedNodeNew(VRT_Node *parent, char *name)

Once such a shared node has been created, it will share its local
transformation matrix with the other nodes on the network that has the same
name, through the use of a Streep shared memory block. The traditional VRT
functions for manipulating the matrix, such as VRT_NodeSetTranslation
and VRT_NodeSetRotation, updates the shared memory and schedules it
for delivery to the other participants in the network.

The concept of shared nodes provides a simple, general and powerful
mechanism to rapidly prototype networked VR applications. It is arguably also
an efficient mechanism, since the user has explicit control over which nodes
that are to be shared. It has been used for several small demonstration
applications at Uppsala University, as well as in the course Interactive
Graphical Systems, where students used it in a one week project create several
interesting applications, of which two are shown in fig 5.1. The left picture
shows a networked battle tank simulator, courtesy of Theresa Carlstedt-
Duke, Christoffer Eriksson and Patrik Lakhsasi, and the right picture

Fig 5.1: A networked battle tank simulator and a networked soccer game

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 27 -

shows a networked soccer game, courtesy of Jonas Eklund and Tony
Gunnarsson.

CVEL
The Collaborative Virtual Environments for Learning23 (CVEL) is a

subproject within the research framework of the Wallenberg Global Learning
Network24. The project has focused on developing and testing an integrated
virtual environment that serves as a meeting point for students and teachers to
meet for collaborative experiments. Streep was used in this project to for data
sharing among the participants in the virtual environment. As a part of the
project, an experiment was conducted where 16 students participated in a
virtual lecture being held in the environment. The results from this experiment
showed that that this virtual lecture environment functions as a useable
alternative to a traditional lecture theatre. The experiment also showed, which
is more important in this context, that Streep can be used to develop
applications for a real world scenario with several users logged in at the same
time.

The Aquarium
The Aquarium25 project, conducted by the Swedish National Defence

College, focuses on developing and testing new concepts in the next generation
military command and control systems. Streep was used for the communication
between various VR-input devices and a distributed rendering system for

Fig 5.2: The CVEL experiment being used during a virtual lecture

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 28 -

displaying and interacting with strategical data. For this purpose a layer called
CONVIDES26 was put on top of Streep for managing virtual device pool, where
applications could connect to read device data. Fig 5.2 shows the Aquarium
experimental set-up as well as a demonstration application used there. The
environment consists of 17 PCs connected together on a local area network.
Two PCs control the “visionarium”, the large horizontal screen seen on the left
image, four PCs serve as “visioscopes”, the four large back-projected screens
of which one is visible behind the visionarium, while the other PCs serves as
workstations for the participants in the session. The purpose of the experiment
was to test networking, rendering and interaction approaches that enabled an
application to be run in this distributed environment.

High speed craft navigation
The Human Computer Interaction department of Uppsala University has

recently conducted a project focusing on human-machine interaction and safety
aspects when controlling high speed crafts27. One of the experiments in this

Fig 5.3: Experimental set-up for the Aquarium project

Fig 5.4: High speed craft navigation experimental set-up

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 29 -

project used an augmented reality display to show safety-critical navigation
information in the navigator’s field of vision.

Streep was used in this project for the communication between the
components in the experimental set-up, including a projected simulation
environment, the augmented reality display and a simulated radar image. Fig
5.4 shows the experimental set-up (top), screen shots from the simulated
environment (bottom left) and the augmented information and simulated radar
image (bottom right).

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 30 -

6. Future Work 6. Future Work 6. Future Work 6. Future Work

Even though the current implementation of Streep has many possible areas
of usage, there are some improvements that I have thought about but not yet
have had time to implement. In this chapter I describe those improvements.

Network time protocol
To save bandwidth or to increase the display update frequency in networked

virtual environments it is common to interpolate the positions of shared objects
that move. A common method for doing this is to use the dead reckoning28
algorithm. To use this algorithm, as well as other algorithms used for
interpolation and prediction of object positions, one needs to know the update
time of the shared data that is to be interpolated. Streep does not currently have
any support for this, mainly because sending a timestamp with each network
message would not make any sense, since there exist no common time shared
by all hosts. One possibility to add such functionality would be to use the
Network Time Protocol29 (NTP). In this scenario the server could act as a NTP
server and the other participants as NTP clients, in which case it would be
possible to have a common concept of time shared by all participants, with a
drift of approximately 10 ms on a local area network according to independent
sources on the comp.protocols.time.ntp newsgroup. This drift is
small enough to make the shared concept of time useful in interactive
applications. To expose the functionality to the programmer, the following
functions could be added to the Streep API:

• int srGetTime(SR *sr) to get the current time in milliseconds,
and

• int srGetUpdateTime(SR *sr, void *p) to get the last
known update time for a shared memory block.

Thread safety
Streep is currently not safe for multi threaded programming, due to global

states kept for managing network message queues. Since VR application are
often event driven, for example if they deal with external input devices, it
would be useful to rethink the message queuing strategy so that it could be
made thread safe.

Security
To make Streep secure many things would have to be done to both the

network protocol and the current implementation. I am not a security expert,
but the things that would be needed includes at least the following:

• User and password authentication.

• Per-block acces control lists, i.e. who is allowed read and modify the
contents of the shared memory blocks, and who is allowed to create and
delete blocks.

• If one really wants to prevent the data from being read by potential
intruders, the block updates would have to be encrypted, for example by
using the Secure Sockets Layer30 (SSL).

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 31 -

• The control protocol that Streep uses today would have to be rethought,
and the code would have to be checked for security flaws, such as
broken boundary checks.

Better standard compliance
The current design and implementation of Streep is built from scratch, only

using the TCP / IP suite protocols for its communication. A more attractive
situation would be to have Streep based on some sort of open standard, a
standard specifically designed for data sharing in interactive applications. The
reason why this was not done is that no such widely adopted standard currently
exists. There are, however, efforts with the goal of designing such a standard
currently going on. The International Telecommunication Union has created a
recommendation for a Multipoint Communication Service, known as the ITU-
T.122 recommendation31. An interesting topic for further research is to
investigate how this recommendation could be implemented and used in the
field of networked virtual environments.

Higher abstraction layer
Even though Streep is a useful tool for the Net-VE developer, its approach is

still on a quite low level. A higher level abstraction level built on top of Streep
has been mentioned previously in the context of shared nodes in the VRT scene
graph library. However, this approach has its limitations, and therefore the
issue of how such a layer should ideally be created provides an interesting area
for further research.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 32 -

Appendix A Appendix A Appendix A Appendix A ---- Streep programming tutorial Streep programming tutorial Streep programming tutorial Streep programming tutorial

The code on the following page is a simple program that shows how to use
the Streep API. The program can act as either a server or a client. To start it in
server-mode, use for instance:

example 1200

And to start it in client-mode use:

example localhost 1200

If the program is started as a server, it creates a shared memory area and
puts some data there. If it is started as a client, the program will continuously
write data into the shared memory block.

#include "streep.h"
#include <stdio.h>
#include <stdlib.h>

void main(int argc, char *argv[])
{
SR *sr;
int *mem;

/**** Check arguments. ****/
if (argc!=3 && argc!=2)
{
fprintf(stderr,"Usage: %s <port> for server-mode, "

"or %s <host> <port> for client-mode.\n",
argv[0],argv[0]);

exit(1);
}

/**** If server-mode, create a server and some memory. ****/
if (argc==2)
{
/**** Use one udp-channel. ****/
sr=srCreateServer(atoi(argv[1]),"udp");

if (!sr)
{
fprintf(stderr,"Unable to create server.\n");
exit(1);

}

/**** Create a block of memory. ****/
mem=srAllocMem(sr,"hello",sizeof(int),SR_LOCK);

/**** Initialize and unlock. ****/
(*mem)=0;
srUnLock(sr,mem);

}

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 33 -

/**** If client-mode, create a client and get a reference to the
block. ****/

else
{
sr=srCreateClient(argv[1],atoi(argv[2]));

if (!sr)
{
fprintf(stderr,"Unable to create client.\n");
exit(1);

}

/**** Get a reference to the block. ****/
mem=srGetMem(sr,"hello",SR_NONE);

}

/** The following code is the same for the server and the client. **/
srChannelSubscribe(sr,0);

while (1)
{
/**** Change the contents of the memory. ****/
(*mem)++;
printf("value: %d\n",*mem);

/**** Send it onto channel 0. ****/
srNotify(sr,mem,0);

/**** This is where the actual network traffic takes place. ****/
srProcess(sr,SR_NO_WAIT,100);

sleep(1);

/**** Have we lost our connection? ****/
if (srGetError()==SR_NO_CONNECTION)
{
fprintf(stderr,"Network error.\n");
exit(1);

}
}

}

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 34 -

Appendix B Appendix B Appendix B Appendix B –––– Streep reference manual Streep reference manual Streep reference manual Streep reference manual

srCreateServer ...35
srCreateClient ..37
srClose...38
srAllocMem ..39
srAllocSerializedMem ...41
srFreeMem ...43
srGetMem...44
srIsServer..46
srReleaseMem ..47
srChannelSubscribe...48
srChannelUnSubscribe..49
srChannelGetInfo ..50
srProcess ...51
srLock ...53
srPUnLock..55
srUnLock ..56
srUpdateFunc...57
srDeleteFunc...58
srLockFunc...60
srGetName..61
srGetSize...62
srGetMaxSize ...63
srHaveLock ..64
srNotify ...65
srPNotify...66
srNumChannels..67
srUserData..68
srGetUserData..69
srGetError..70
srSearchLan ...71
srIsValid..72

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 35 -

SR* srCreateServer

(int port, char* channels)
initialize streep in server-mode

Documentation
The srCreateServer function creates a server-side repository replication.
Clients can connect to the server using the srCreateClient function. To
create data in the repository, or to obtain the data that might be put
there by a client, use srAllocMem, srAllocSerializedMem or
srGetMem.

The function returns a handle that is used by many other functions to
perform operations on the repository. Most such functions have the
same semantics for both the server and the client. This means that once
a handle is obtained, from either srCreateServer or srCreateClient, it
can be used in the same manner regardless of weather it represents a
client or a server.

The channels parameter is a string that describes a number of
communication channels that are set up by the server. These channels
are used to send and receive block-updates in cases where performance
is more important than reliability and concurrency control. The string
consists of a space separated list containing channel-types and and
optional parameters like in the following example:

tcp udp mcast@255.1.1.1:1234 mcast@255.1.1.2:1234

In this example four channels would be set up, one using tcp (reliable),
one using udp (unreliable) and two using multicast (unreliable). The tcp
and udp channels do not need any parameters. The mcast channel need
to be specified on the following format:

mcast@<multicast-address>:<port>[:ttl]

Where the address is a valid multicast address, i.e. in the range
225.0.0.0 - 239.255.255.255, and port is a valid udp port number. The
optional ttl parameter is the time to live for the multicast packets, i.e.
the maximum number of network hops that the packet will be routed
over. If this parameter is omitted a default value of 16 will be used.

The channels are later referred to using integers. In the example above,
the tcp channel would be referred to as channel 0, the udp channel as
channel 1 and the two multicast channels as 2 and 3.

There is no restriction on the the number of channels, regardless of the
type of the channel, that is possible to create.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 36 -

How each channel should be used, i.e. what update that should be sent
on which channel, is application dependent and is a choice for the
application developer.

Parameters:
port - The port to listen to.
channels - A string describing the communication channels to be used.

Returns:

On success this function returns a pointer that represents the local
repository replication. Otherwise, NULL is returned and the function
srGetError can be used to retrieve information about the error.

See Also:

srCreateServer srClose

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 37 -

SR* srCreateClient

(char* host, int port)
initialize Streep in client-mode

Documentation
The srCreateClient function creates a client-side repository and
attempts to connect it to a server. The local repository will initially be
empty, even if there are data on the server. To create data in the
repository, or to obtain the data that is already there, use srAllocMem,
srAllocSerializedMem or srGetMem.

The function returns a handle that is used by many other functions to
perform operations on the repository. Most such functions have the
same semantics for both the server and the client. This means that once
a handle is obtained, from either srCreateServer or srCreateClient, it
can be used in the same manner regardless of weather it represents a
client or a server.

Parameters:

host - The host to connect to.

port - The port that the host listens to.

Returns:

On success this function returns a pointer that represents the local
repository replication. Otherwise, NULL is returned and the function
srGetError can be used to retrieve information about the error.

See Also:

srCreateServer srClose

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 38 -

void srClose

(SR* sr)
dispose a repository replication

Documentation
The srClose function frees all memory and closes all network
connections used by the repository sr. If the repository is a client, any
locks owned by the client will be removed, and all shared blocks
marked as volatile will be freed. If the repository is a server all clients
will be disconnected. A client-side repository will not be useable once
its server is closed.

Parameters:

sr - The repository that is to be disposed.

See Also:

srCreateServer srCreateClient

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 39 -

void* srAllocMem

(SR* sr, char* name, int size, int flags)
allocate a block of shared memory

Documentation
The srAllocMem function allocates a shared block of memory. The
name parameter must be a unique name identifying the block. If a
block with the specified name already exists, this function will fail. To
get a reference to the block from another host, use the function
srGetMem.

The size parameter specifies the maximum size of the data that are to
be stored in the block, the actual size can be changed using srPNotify
or srPUnlock.

The contents of the block will be sent as raw data, so beware of
different byte orders on different hosts. To make sure that the data is
correctly serialized, use the function srAllocSerializedMem.

The pointer returned by this function can be used in the same way as a
pointer returned by standard allocation functions such as malloc. The
pointer is also used to identify the block by other functions in the API.

Changes to a block made by one host need to be explicitly sent to other
hosts. Two different mechanisms exist for this purpose;
srLock/srUnLock for cases where concurrency control is important and
srNotify for cases where performance is more important that
concurrency control.

The flags parameter is formed by OR'ing one or more of the following
values:

SR_VOLATILE - This flag requests that the block will automatically
be freed when the client that created it disconnects from the server. The
block will be freed regardless of weather the client disconnects
gracefully or crashes.

SR_LOCK - This flag requests that the host that creates the block
should initially hold a lock on the block. This is highly recommended
in many cases. If this flag is not used it might be possible for another
host to get the block before it has any contents (i.e. it has garbage)
which most often will lead to undesirable results.

Parameters:

sr - The local repository replication.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 40 -

name - The name used to refer to the block.

size - Maximum size of the block.

flags - Specifies how the block is to be allocated.

Returns:

On success this function returns a pointer that can be used to access the
local copy of the shared block (in the same way as a call to malloc). On
error, NULL is returned and the function srGetError can be used to retreive
information about the cause of the error.

See Also:

srGetMem srAllocSerializedMem srUnLock srNotify

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 41 -

void* srAllocSerializedMem

(SR* sr, char* name, char* format,
int flags)

allocate a block of serialized shared memory

Documentation
The srAllocSerializedMem funciton allocates a shared block of
memory that will be automatically serialized and unserialized by the
system. The name parameter must be a unique name identifying the
block. If a block with the specified name already exists, this function
will fail. To get a reference to the block from another host, use the
function srGetMem.

The size of the block is given implicitly by the format parameter, and
might be different on different hosts due to structure alignment issues.
This size cannot be changed dynamically.

The format string describes the data that will be stored in the block.
Such a descriptor string contains a sequence of the following
characters:

c - char (8 bit)
s - short (16 bit)
l - long (32 bit)
f - float
d - double

Arrays can be defined by [n] where n is an integer. Structures can be
encapsulated by { and }. As an illustration, consider the following
structures:

struct a
{

int x;
char s[10];

};
struct b
{

struct a x[10];
};

The struct a can be described by "lc[10]" and the struct b can be
described by "{lc[10]}[10]".

The pointer returned by this function can be used in the same way as a
pointer returned by standard allocation functions such as malloc. The
pointer is also used to identify the block by other functions in the API.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 42 -

Changes to a block made by one host need to be explicitly sent to other
hosts. Two different mechanisms exist for this purpose;
srLock/srUnLock for cases where concurrency control is important and
srNotify for cases where performance is more important that
concurrency control.

The flags parameter is formed by OR'ing one or more of the following
values:

SR_VOLATILE - This flag requests that the block will automatically
be freed when the client that created it disconnects from the server. The
block will be freed regardless of weather the client disconnects
gracefully or crashes.

SR_LOCK - This flag requests that the host that creates the block
should initially hold a lock on the block. This is highly recommended
in many cases. If this flag is not used it might be possible for another
host to get the block before it has any contents (i.e. it has garbage)
which most often will lead to undesirable results.

Parameters:

sr - The local repository replication.

name - The name used to refer to the block.

format - A string specifying the format of the block.

flags - Specifies how the block is to be allocated.

Returns:

On success this function returns a pointer that can be used to access the
local copy of the shared block (in the same way as a call to malloc). On
error, NULL is returned and the function srGetError can be used to retreive
information about the cause of the error.

See Also:

srGetMem srAllocSerializedMem srUnLock srNotify

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 43 -

void srFreeMem

(SR* sr, void* p)
free shared memory

Documentation
The srFreeMem function frees the shared memory block pointed to by
p. This function is used to ultimately remove a shared block, to just
remove a local copy use the function srReleaseMem instead.

The block will immediately be removed from the memory of the host
that calls srFree. It will not be completely removed from the other
hosts, however, before all hosts that have references to the block have
given up those references by calling either srFreeMem or
srReleaseMem.

When the first host calls srFreeMem the block will be invalidated,
meaning that it is no longer possible to get references to the block using
srGetMem, and that it is no longer possible to update or receive updates
for the block. The block's name will also be removed from all internal
tables, so that immediately following the call to srFreeMem it will be
possible to create a new block with that name. The hosts that have
references to the block, other than the one calling srFreeMem, will be
notified of this invalidation event by a call to their deletion-callback, if
they have registered such a callback for the block using the
srDeleteFunc function.

Blocks that have been invalidated (i.e. freed by one host) but not yet
freed by all other hosts can be seen as 'zoombie blocks', analogous to
zombie processes on UNIX systems.

Parameters:

sr - The local repository replication.

p - The block to be freed.

See Also:

srAllocMem srReleaseMem srDeleteFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 44 -

void* srGetMem

(SR* sr, char* name, int flags)
get a reference to a shared block

Documentation
The srGetMem function gets a reference to the shared block identified
by name. The block must have been previously created using
srAllocMem or srAllocSerializedMem, or else this function will fail.

It is not possible to get a reference to a block if another host currently
holds a lock on that block. The default action in this case is for the
system to block until that host has released the lock. This behavior can
be changed using the flags parameter, see below.

The maximum size of the data that can be stored in the block is given
when the block is allocated, either explicitly by the srAllocMem
function or implicitly by the srAllocSerializedMem function. This size
can be obtained using the srGetMaxSize function. The block's current
size can be obtained using the srGetSize function.

The pointer returned by this function can be used in the same way as a
pointer returned by standard allocation functions such as malloc. The
pointer is also used to identify the block by other functions in the API.

Changes to a block made by one host need to be explicitly sent to other
hosts. Two different mechanisms exist for this purpose;
srLock/srUnLock for cases where concurrency control is important and
srNotify for cases where performance is more important that
concurrency control.

The flags parameter controls the action to be taken if a host holds a
lock on this function and can be one of the following symbolic
constants:

SR_NONE - The system will block until the host that holds the lock
has released it. This is the default.

SR_NOBLOCK - This flag requests that the system should not block
if a lock is held. In case there is a lock held, the contents of the block
will be undefined (garbage) until the lock is released. When the lock is
released the block will be filled with it's contents, and block's update-
callback will be called, if such a callback is registered using the
srUpdateFunc function.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 45 -

SR_NOQUEUE - Same action as in the case of SR_NOBLOCK with
the difference that the block will not be filled when the host that holds
the lock releases it.

Since this function deals with locking in some sense, beware of
deadlocks!

Parameters:

sr - The local repository replication.

name - The name of the block.

flags - Specifies how the block is to obtained.

Returns:

On success this function returns a pointer that can be used to access the
local copy of the shared block (in the same way as a call to malloc). On
error, NULL is returned and the function srGetError can be used to retrieve
information about the cause of the error.

See Also:

srAllocMem srAllocSerializedMem srLock srUpdateFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 46 -

int srIsServer

(SR* sr)
check repository type

Documentation
The srIsServer function checks weather the repository sr represents a
server.

Parameters:

sr - The repository to be checked.

Returns:

If sr represents a server this function returns a positive value; if it
represents a client this function returns 0.

See Also:

srCreateServer srCreateClient

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 47 -

void srReleaseMem

(SR* sr, void* p)
release shared memory

Documentation
The srReleaseMem removes the block indicated by p from the local
repository. The block will not be removed from the server, meaning
that other hosts can still use this block. To ultimately remove the block,
use the function srFreeMem instead.

Parameters:

sr - The local repository replication.

p - The block to be released.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 48 -

int srChannelSubscribe

(SR* sr, int channel)
subscribe to a communication channel

Documentation
The srChannelSubscribe function subscribes to the specified
communication channel. This channel can be used to send block
updates to other hosts using srNotify and to receive block updates from
other hosts.

The channels are set up during the initialization of the server, see
srCreateServer.

The number of available channels can be obtained using the
srNumChannels function, and information about each channel can be
obtained using the srChannelGetInfo function.

How each channel should be used, i.e. what update that should be sent
on which channel, is application dependent and is a choice for the
application developer.

Parameters:

sr - The local repository replication.

channel - The channel to subscribe to.

Returns:

On success this function returns a positive value. Otherwise, this function
returns 0.

See Also:

srChannelUnSubscribe srChannelGetInfo srNumChannels srCreateServer

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 49 -

int srChannelUnSubscribe

(SR* sr, int channel)
unsubscribe from a communication channel

Documentation
The srUnSubscribe function unsubscribes from a communication
channel. This channel can no longer be used to send block updates to
other hosts or receive block updates from other hosts.

The channels are set up during the initialization of the server, see
srCreateServer.

The number of available channels can be obtained using the
srNumChannels function, and information about each channel can be
obtained using the srChannelGetInfo function.

How each channel should be used, i.e. what update that should be sent
on which channel, is application dependent and is a choice for the
application developer.

Parameters:

sr - The local repository replication.

channel - The channel to unsubscribe from.

Returns:

On success this function returns a positive value. Otherwise, this function
returns 0.

See Also:

srChannelSubscribe srChannelGetInfo srNumChannels srCreateServer

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 50 -

char* srChannelGetInfo

(SR* sr, int channel)
unsubscribe from a communication channel

Documentation
The srChannelGetInfo function returns a string containing a type and a
possible options for the channel as specified when the channel was
created by a call to the srCreateServer function.

The pointer returned points to memory allocated by the system and will
remain valid until the repository is disposed using srClose. Do not
attempt to free this memory.

Parameters:

sr - The local repository replication.

channel - The channel to retrieve information for.

Returns:

A string containing information about the channel.

See Also:

srChannelSubscribe srChannelUnSubscribe srNumChannels srCreateServer

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 51 -

void srProcess

(SR* sr, int waittimeout, int readtimeout)
process incomming / outgoing network traffic

Documentation
The srProcess function sends data that has been queued by the srNotify
or srPNotify functions, for all channels that the host has subscribed to.

The srProcess also receives data from those channels, as well as data
about other events. Depending on the data received, the callback
functions registered using srUpdateFunc, srLockFunc or srDeleteFunc
may be called.

The waittimeout parameter specifies the maximum number of
milliseconds to spend waiting for data to arrive. If no data are received
within that interval, this function will return without doing anything. If
data are received, this function tries to receive all that data, but it does
not spend more time than readtiemout millisec doing so.

The symbolic constants SR_NO_TIMEOUT and SR_NO_WAIT can
also be used as values to the waittimeout and readtimeout parameters.

For the readtimeout parameter, however, it is not recommended to use
these constants in most cases. A value of SR_NOWAIT will cause the
system to process only the data currently in the network buffers, which
might lead to more and more data that are 'queued up', which in turn
leads to the data getting more and more outdated before it is received.
A value of SR_NO_TIMEOUT might lead to the system getting stuck
in a loop, doing nothing else than receiving data, if there are many fast
hosts sending a lot of data on the network. The value that actually
should be used for this parameter is application specific, but a value of
100 milliseconds might be a good value to try.

For the waittimeout parameter these constants might sometimes be
useful. A value of SR_NOWAIT has the effect of polling the network
for activity. Useful if you have a graphically intense application and
don't want to spend to much time just waiting. A value of
SR_NOTIMEOUT has the effect of waiting, in a system friendly
manner, for data to arrive. Useful, for example in a server, if you have
nothing to do unless you get some data.

If an error is detected this function returns immediately. The function
srGetError can be used to get information about the cause of the error.

Parameters:

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 52 -

sr - The local repository replication.

waittimeout - The maximum number of milliseconds to spend waiting for
activity.

readtimeout - The maximum number of milliseconds to spend receiving
data.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 53 -

int srLock

(SR* sr, void* p, int flags)
lock memory for mutual exclusion

Documentation
The srLock function attempts to lock a shared memory block for
mutual exclusion. Note that the lock is advisory, it does not prevent any
other host from actually writing to the memory, it just ensures that only
one host has a lock.

If the block is already locked by another host, the default action for this
function is to block until the lock is available. This behavior can be
changed by passing one of the following symbolic constants as value
for the flags parameter:

SR_NONE - The system will block until the host that holds the lock
has released it. This is the default.

SR_NOBLOCK - This flag requests that the system should not block
if a lock is held. In case there is a lock held, the srLock function will
return 0, and the lock request will be queued. When the lock becomes
available, the lock-callback will be called, if any such callback is
registered using the srLockFunc function.

SR_NOQUEUE - Same action as in the case of SR_NOBLOCK with
the difference that the lock request will not be queued; if the lock can
not be obtained immediately it will not be obtained at all.

When a lock is obtained, using either of the mechanisms above, the
contents of the block will also be updated in the local repository.

The functions srLock, srUnLock and srPUnLock represent one way of
distributing updates to other hosts. These functions are intended to be
used in cases where concurrency control is important. In the cases
where concurrency control is not that important, the srNotify and
srPNotify fnction provides a more efficient alternative.

Since this function deals with locking, beware of deadlocks!

Parameters:

sr - The local repository replication.

p - The block to attempt to lock.

flags - Specifies how the lock is to obtained.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 54 -

Returns:

If a lock was obtained, this function returns a possitive value, otherwise 0 is
returned.

See Also:

srPUnLock srUnLock srNotify srPNotify

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 55 -

int srPUnLock

(SR* sr, void* p, int size)
unlock memory and change size

Documentation
The srPUnLock function unlocks a shared memory block that has
previously been locked using the srLock function. If the black was
created using the srAllocMem, this function also changes the block's
current size into the one specified by the size parameter. If the block
was created using the srAllocSerializedMem, the bock's size will not be
changed.

If the srPUnLock is called from a client, this function will send the
block's contents to the server.

The functions srLock, srUnLock and srPUnLock represent one way of
distributing updates to other hosts. These functions are intended to be
used in cases where concurrency control is important. In the cases
where concurrency control is not that important, the srNotify and
srPNotify function provides a more efficient alternative.

Parameters:

sr - The local repository replication.

p - The block to unlock.

size - The new size of the block.

Returns:

If the block was successfully unlocked, this function returns a positive
value. Otherwise, this function returns 0.

See Also:

srLock srUnLock srNotify srPNotify

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 56 -

int srUnLock

(SR* sr, void* p)
unlock memory

Documentation
The srPUnLock function unlocks a shared memory block that has
previously been locked using the srLock function.

If the srUnLock is called from a client, this function will send the
block's contents to the server.

The functions srLock, srUnLock and srPUnLock represent one way of
distributing updates to other hosts. These functions are intended to be
used in cases where concurrency control is important. In the cases
where concurrency control is not that important, the srNotify and
srPNotify function provides a more efficient alternative.

Parameters:

sr - The local repository replication.

p - The block to unlock.

Returns:

If the block was successfully unlocked, this function returns a positive
value. Otherwise, this function returns 0.

See Also:

srPUnLock srLock srNotify srPNotify

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 57 -

void srUpdateFunc

(SR* sr, void* p, SR_UPDATEFUNC* func)
register update callback

Documentation
The srUpdateFunc registers a callback function to handle update
events. The callback function will be called from within the srProcess
function when the system receives block-updates from other hosts.

The callback function should be declared using the following
prototype:

void func(SR *sr, void *p);

The function will be called from within srProcess with the sr parameter
set to the local repository, and the p parameter set to the block that the
callback is registered for.

It is possible to use the same callback function for several blocks. In
those cases it might be useful to associate extra data with the block, i.e.
data that are related to the block, but not distributed to other hosts.
Such data can be registered using the srUserData function and retrieved
using the srGetUserData function.

To remove a previously registered callback, call the srUpdateFunc with
a NULL value for the func parameter.

Parameters:

sr - The local repository replication.

p - The block to register a callback function for.

func - The callback function.

See Also:

srDeleteFunc srLockFunc srProcess srUserData srGetUserData

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 58 -

void srDeleteFunc

(SR* sr, void* p, SR_DELETEFUNC* func)
register invalidation callback

Documentation
The srDeleteFunc registers a callback function to handle invalidation
events. Invalidation events occur when a host frees shared memory
using the srFreeMem function. The callback function will be called
from within the srProcess function when the system receives such
events from other hosts.

The callback function should be declared using the following
prototype:

void func(SR *sr, void *p);

The function will be called from within srProcess with the sr parameter
set to the local repository, and the p parameter set to the block that the
callback is registered for.

It is possible to use the same callback function for several blocks. In
those cases it might be useful to associate extra data with the block, i.e.
data that are related to the block, but not distributed to other hosts.
Such data can be registered using the srUserData function and retrieved
using the srGetUserData function.

To remove a previously registered callback, call the srDeleteFunc with
a NULL value for the func parameter.

In most cases the callback function should release the local references
to the block. In its simplest form such a callback could look like this:

void deletecallback(SR *sr, void *p)
{

srFreeMem(sr,p);
}

Not registering an invalidation-callback will often lead to memory
leaks in the local repository.

Parameters:

sr - The local repository replication.

p - The block to register a callback function for.

func - The callback function.

See Also:

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 59 -

srFreeMem srUpdateFunc srLockFunc srProcess srUserData
srGetUserData

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 60 -

void srLockFunc

(SR* sr, void* p, SR_DELETEFUNC* func)
register lock callback

Documentation
The srLockFunc registers a callback function to handle notification of
lock-grants. The callback function will be called from within the
srProcess function when the system receives lock-grants from other
hosts. The callback will only be called for those locks that have been
requested using SR_NOBLOCK flag for the srLock function.

The callback function should be declared using the following
prototype:

void func(SR *sr, void *p);

The function will be called from within srProcess with the sr parameter
set to the local repository, and the p parameter set to the block that the
callback is registered for.

It is possible to use the same callback function for several blocks. In
those cases it might be useful to associate extra data with the block, i.e.
data that are related to the block, but not distributed to other hosts.
Such data can be registered using the srUserData function and retrieved
using the srGetUserData function.

To remove a previously registered callback, call the srLockFunc with a
NULL value for the func parameter.

Parameters:

sr - The local repository replication.

p - The block to register a callback function for.

func - The callback function.

See Also:

srLock srDeleteFunc srUpdateFunc srProcess srUserData srGetUserData
srHaveLock

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 61 -

char* srGetName

(SR* sr, void* p)
get name for a shared memory block

Documentation
The srGetName functions retrieves the name associated with a block.
The block's name is the string passed to the srAllocMem or
srAllocSerializedMem functions when the block was created.

It is not possible to get he name for a block that has been invalidated,
i.e. freed by another host.

The pointer returned points to memory allocated by the system and will
remain valid until the repository is disposed using srClose, or the block
is removed using srFreeMem or srReleaseMem. Do not attempt to free
this memory.

Parameters:

sr - The local repository replication.

Returns:

A string containing the name for the block.

See Also:

srAllocMem srAllocSerializedMem srFreeMem

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 62 -

int srGetSize

(SR* sr, void* p)
get the current size of a shared memory block

Documentation
The srGetSize function retrieves the current size of a shared memory
block. If the block was allocated using srAllocMem this size may
change during the lifetime of the block. In such case, to get the
maximum size that this block can hold, use the srGetMaxSize function.

If the block was allocated using srAllocSerializedMem this size is
static, but may be different for each host due to structure alignment
issues.

Parameters:

sr - The local repository replication.

Returns:

The current size of the block.

See Also:

srGetMaxSize srAllocMem srAllocSerializedMem

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 63 -

int srGetMaxSize

(SR* sr, void* p)
get the maximum size of a shared memory block

Documentation
The srGetMaxSize function retrieves the maximum size of the data that
the indicated block can hold. If the block was allocated using the
srAllocMem function, the value returned by this function is always
equal to the size passed to that function. If the block was allocated
using the arAllocSerializedMem this value is given implicitly by the
format string passed to that function.

Parameters:

sr - The local repository replication.

Returns:

The maximum size of the data that the block can hold.

See Also:

srGetSize srAllocMem srAllocSerializedMem

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 64 -

int srHaveLock

(SR* sr, void* p)
check lock status

Documentation
The srHaveLock function checks to see if the host that calls the
function has a lock on the shared memory block indicated by the p
parameter.

This function provides an alternative to using a lock callback-function
when obtaining a lock asynchronously, i.e. when using the srLock
function with the SR_NOBLOCK flag.

Parameters:

sr - The local repository replication.

Returns:

If the host that calls this function has a lock on the block p, this function
returns a positive value. Otherwise, this function returns zero.

See Also:

srLock srUnLock srPUnLock srLockFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 65 -

void srNotify

(SR* sr, void* p, int channel)
send block update

Documentation
The srNotify function schedules the data from the block p to be sent on
the channel channel. The data will be sent during the next call to
srProcess. The channel must have been previously subscribed to using
srChannelSubscribe.

If several block updates are scheduled on the same channel before a
call to srProcess, these updates will be sent in the same network
message, which will usually be more efficient than sending them in
individual messages. The updates will also be seen as atomic, i.e. they
will all be processed at the same time at the host that receives them. If
the channel is unreliable, these updates will either all reach a host, or
none of them will.

Note that channels that are based on datagram services, such as udp and
multicast channels, have a underlying maximum message size. This
size is platform dependent, but typically around 64K. If this limit is
reached no more data can be placed in the channel.

When the data arrive to a remote host, this host's update notification
callback will be called, if the host has registered such a callback using
the srUpdateFunc function. If the channel is a multicast channel, the
local update callback will also be called during the next call to
srProcess.

Parameters:

sr - The local repository replication.

p - The block that has been changed.

channel - The channel where to send the update.

Returns:

If the block was successfully placed in the channels output buffer, this
function returns a positive value. Otherwise, 0 is returned.

See Also:

srPNotify srProcess srChannelSubscribe srChannelUnSubscribe

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 66 -

void srPNotify

(SR* sr, void* p, int channel, int size)
send block update and change size

Documentation
The srNotify function schedules the data from the block p to be sent on
the channel channel. The data will be sent during the next call to
srProcess. The channel must have been previously subscribed to using
srChannelSubscribe.

If the block was allocated using srAllocMem, this function will also
change the block's current size to the value of the size parameter.

If several block updates are scheduled on the same channel before a
call to srProcess, these updates will be sent in the same network
message, which will usually be more efficient than sending them in
individual messages. The updates will also be seen as atomic, i.e. they
will all be processed at the same time at the host that receives them. If
the channel is unreliable, these updates will either all reach a host, or
none of them will.

Note that channels that are based on datagram services, such as udp and
multicast channels, have a underlying maximum message size. This
size is platform dependent, but typically around 64K. If this limit is
reached no more data can be placed in the channel.

When the data arrive to a remote host, this host's update notification
callback will be called, if the host has registered such a callback using
the srUpdateFunc function. If the channel is a multicast channel, the
local update callback will also be called during the next call to
srProcess.

Parameters:

sr - The local repository replication.

p - The block that has been changd.

channel - The channel where to send the update.

size - The block's new size.

See Also:

srNotify srProcess srChannelSubscribe srChannelUnSubscribe

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 67 -

int srNumChannels

(SR* sr)
get the number of available channels

Documentation
The srNumChannels function retrieves the number of communication
channels available on the system.

Parameters:

sr - The local repository replication.

Returns:

The number of available channels.

See Also:

srCreateServer srChannelGetInfo

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 68 -

void srUserData

(SR* sr, void* p, void* data)
set per-block user data

Documentation
The srUserData function sets the user-data associated with a block.
This data can later be obtained using the srGetUserData function.

The user-data exist to associate local data with a shared block. There is
no way for one host to obtain the user-data associated with a block by
another host.

Parameters:

sr - The local repository replication.

p - The shared memory block.

data - The data to associate with the block.

See Also:

srGetUserData srAllocMem srAllocSerializedMem srUpdateFunc
srDeleteFunc srLockFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 69 -

void* srGetUserData

(SR* sr, void* p)
get per-block user data

Documentation
The srGetUserData function retrieves the user-data associated with a
block. This data should have been registered using the srUserData
function.

The user-data exist to associate local data with a shared block. There is
no way for one host to obtain the user-data associated with a block by
another host.

Parameters:

sr - The local repository replication.

p - The block to retreive the user-data for.

Returns:

The data associated with the block.

See Also:

srUserData srAllocMem srAllocSerializedMem srUpdateFunc sDeleteFunc
srLockFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 70 -

int srGetError

(void)
get error information

Documentation
The srGetError function returns the error code for the last occurred
error. If no errors have been detected since the last call to srGetError,
this function returns SR_NO_ERROR. If an error is detected, the
srGetError returns a value equal to one of the following symbolic
constants:

SR_NO_ERROR - No error has been detected.

SR_INVALID_VALUE - A numeric argument is out of range or
otherwise invalid in the current state.

SR_INVALID_OPERATION -The specified operation is not allowed
in the current state.

SR_OUT_OF_MEMORY - There is not enough memory left to
execute the function. This error can occur both on the server, if it runs
out of memory, or on the client, if either the server or the client runs
out of memory.

SR_NO_CONNECTION - The client has lost its connection to the
server. After this error has been detected, no more data can either be
sent or received. This error can only occur on a client. If a server
detects a lost connection to one of its clients, this is treated as if that
client has disconnected, and no error is reported.

Returns:

The current error status, or SR_NO_ERROR if there is no error.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 71 -

char* srSearchLan

(int port, int retries, int timeout, char* addr)
search local area network

Documentation
The srSearchLan function searches the local area network for a server
running on the specified port. The function does this by sending a
broadcast and waits for a response from a server. If no response is
received, this function waits for the specified number of milliseconds
and sends another broadcast. This procedure is repeated as many times
as the value of the retries parameter. The maximum possible waiting
time is retries * timeout millisec.

Returns:

On success this function returns a pointer to the destination address addr.
On error this function returns NULL.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 72 -

int srIsValid

(SR* sr, void* p)
check block validity

Documentation
The srHaveLock function checks to see if a block is valid.

This function provides an alternative to using a deletion callback-
function to detect blocks that have been remotely invalidated.

Invalidation occur when a host frees shared memory using the
srFreeMem function. If a block has been invalidated, it is no longer
possible to get references to the block using srGetMem, and that it is no
longer possible to update or receive updates for the block. The block's
name will also be removed from all internal tables, so that immediately
following the call to srFreeMem it will be possible to create a new
block with that name.

Parameters:

sr - The local repository replication.

p - The block to check for validity.

Returns:

If the block is valid this function returns a positive value. Otherwise, this
function returns zero.

See Also:

srFree srDeleteFunc

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 73 -

ReferencesReferencesReferencesReferences

1 Birell, A. D. and Nelson, B. J. Implementing Remote Procedure Calls. ACM
Trans. On Computer Systems, vol. 2, pp. 39-59, Feb 1984.

2 Olson, M. Introduction to Corba. LinuxWorld. Sep 1999. Retrieved Mar 14,
2002 from the World Wide Web: http://www.linuxworld.com/linuxworld/lw-
1999-09/lw-09-corba_1.html

3 Tanenbaum, A. S. Distributed operating systems. Prentice-Hall, Inc., 1995.
ISBN 0-13-143934-0

4 Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik.
Verlag von Johann Ambrosius Barth, Leipzig 1905.

5 Carreiro, N. and Gelernter, D. The S/Net’s Linda Kernel. ACM Trans. On
Computer Systems, vol. 4, pp. 110-129, May 1986.

6 Singhal, S. and Zyda, M. Networked Virtual Environemnts, ACM Press 1999.
ISBN 0-201-32557-8

7 Pope, A. The SIMNET network and protocols.Technical Report 7102.
Cambridge, MA: BBN Systems and Technologies, July 1989.

8 Carlsson, C. and Hagsand, O. DIVE – a Multi-User Virtual Reality System.
IEEE VRAIS, Sept 1993.

9 Java™ Shared Data Toolkit Home Page, Sun Microsystems 1995-2002.
Retreived Mar 12, 2002 from the World Wide Web:
http://java.sun.com/products/java-media/jsdt/

10 Leigh, J. CAVERNSoft G2, University of Illinois at Chicago. Retrieved Mar
12, 2002 from the World Wide Web:
http://www.openchannelsoftware.org/projects/CAVERNsoft_G2/

11 DIVERSE Toolkit, Virginia Polytechnic Institute and State University.
Retreived Mar 12 from the World Wide Web: http://www.diverse.vt.edu/DTK/

12 Brutzman, D., Zyda M., Watsen, K. and Macedonia M. Virtual Reality
Transfer Protocol (vrtp) Design Rationale. WET ICE: Sharing a Distributed
Virtual Reality. Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 1997.

13 MacIntyre, B. and Feiner, S. A Distributed 3D Graphics Library. Columbia
University.

14 Anupam, V. and Bajaj, C. L. Shastra: Multimedia Collaborative Design
Environment. IEEE Multimedia 1(2), Summer 1994.

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 74 -

15 Bernier, Y. W. Half-Life and Team Fortress Networking. Game Developer’s
Conference proceedings, 2000.

16 Datareel Home Page. glNET Software, 2001. Retrieved Aug 14, 2001 from
the World Wide Web: http://glnetsoftware.com/datareel

17 RFC 1014: XDR: External Data Representation, Sun Microsystems, Inc. June
1987.

18 IBM Pitsburg Lab Documentation, IBM Corporation, 2001. Retrieved Aug
15, 2001 from the World Wide Web:
http://www.transarc.ibm.com/Library/documentation/index.html

19 Moss, J. E. B. Working with persistent objects: To swizzle or not to swizzle.
IEEE Transactions on Software Engineering, 18(8):657--673, August 1992.
Retrieved Aug 15, 2001 from the World Wide Web:
http://citeseer.nj.nec.com/moss92working.html

20 InterAct: Virtual Sharing for Interactive Client-Server Applications, S.
Parthasarathy and S. Dwarkadas, Fourth Workshop on Languages, Compilers,
and Run-time Systems for Scalable Computers, May 1998. Retrieved Sep 19,
2000 from the World Wide Web:
http://www.cs.rochester.edu/u/sandhya/papers/lcr98_interact.ps

21 Standard Template Library Programmer's Guide. Silicon Graphics, Inc. ©
1993-2002. Retrieved Apr 2, 2002 form the World Wide Web:
http://www.sgi.com/tech/stl/

22 Tanenbaum, A. S. Computer Networks. Prentice Hall PTR 1996. ISBN
0133499456.

23 Seipel S. and Lindkvist M. Interactive Graphical Environments for
Collaborative Learning and Teaching. Uppsala University Research Report
2001:9, ISSN 1403-7572.

24 Wallenberg Global Learning Network. Retrieved Apr 2 form the World Wide
Web: http://www.wgln.org

25 Command & Control, Swedish National Defence College, Department of
Operational Studies, 2002. Retrieved Mar 11, 2002 from the World Wide Web:
http://www.militaryscience.org

26 Seipel S. and Lindkvist M. Project Aqua progress report, 2001. Department
of Information Science, Uppsala University. Order 1853-010614-OpI

27 Olsson, E. Safer navigation at sea through augmented reality? Uppsala
University Technical Report. ISSN 1404-3203.

28 Aronson, J. Dead Reckoning: Latency Hiding for Networked Games.
Gamasutra. 2000. Retrieved Sep 27, 2000 from the World Wide Web:
http://www.gamasutra.com/features/special/online_report/dead_reckoning.htm

A State Sharing Toolkit for
Interactive Applications

Mikael Lindkvist

- 75 -

29 Mills, D. Time Synchronization Server. 2002. Retrieved Mar 8, 2002 from
the Word Wide Web: http://www.eecis.udel.edu/~ntp/

30 The Open Source Toolkit for SSL/TSL, The OpenSSL project, 1999.
Retrieved Mar 8,2002 from the World Wide Web: http://www.openssl.org/

31 ITU-T RECOMENTATION T.122, International Telecommunication Union,
February 1998

