
TRITA-NA-D0002 • CID-60, KTH, Stockholm, Sweden 2000

A Practician's Guide to DIVE
Gustav Taxén

Gustav Taxén
A Practician's Guide to DIVE

Report number: TRITA-NA-D0002, CID-60
ISSN number: ISSN 1403-073X
Publication date: January 2000
E-mail of author: gustavt@nada.kth.se
URL of author: http://www.nada.kth.se/~gustavt

CID-60 • A Practician's Guide to DIVE 5 (25)

Contents
INTRODUCTION..6

RELATIONSHIP BETWEEN DIVE BINARIES...6

DIVE WORLDS ..9

OBJECT DEFINITION FILES ... 10

SCALE OF DIVE WORLDS..10
NEWLINES AT END OF FILES...10
WHITESPACES AFTER LINEBREAKS...10
VECTOR, TEXTURE COORDINATE AND NORMAL SPECIFICATION ..10
"OBJECT" VS. "SUBS OBJECT" ..12
WORLD DECLARATION ...12
BACKFACE CULLING ...12
GRASPABLE OBJECTS..13

THE DIVE/TCL INTERFACE... 13

PROPERTIES, VARIABLE SCOPE AND EVENTS..14
"DIVE_SEND" VS. "DIVE_CALL" ...16
CREATING NEW OBJECTS ON-THE-FLY...16
LEVEL-OF-DETAIL ..17
DATABASE NAVIGATION ..18
RELATIONSHIP BETWEEN TRANSFORMATIONS AND OBJECT INFO..20
ADDING OBJECTS TO THE VISOR..20
KEYBOARD REPEAT ..20

REFERENCES... 21

APPENDIX A - SOURCE CODE... 22

STOPWATCH ...22
UNTRANSFORM ...25

6 (25) CID-60 • A Practician's Guide to DIVE

A Practitian's Guide to DIVE

Introduction

This report presents solutions to practical problems often encountered when building
interactive virtual environments in DIVE [3][4][8]. It is intended for people that have tried
navigating with the vishnu browser in single-user mode and want to know how to set up DIVE
for multi-user environments or want to create their own DIVE worlds. To create DIVE
worlds, a basic knowledge of Tcl/Tk [9] is required. There are plenty of Tcl/Tk tutorials
available on the WWW; good place to start is the Scriptics website [10].

DIVE should not be thought of as an application or a program. It is more correct to say
that DIVE is a protocol for manipulating and viewing virtual worlds. The protocol is
implemented in a set of programming libraries that can be used to create applications. In this
text, a DIVE application is defined as an application that "knows" about the DIVE protocol
and can talk to other DIVE applications.

There are four main reasons why DIVE is at least as interesting as similar products such
as ActiveWorlds [1]:

• DIVE is free for non-commercial use.
• DIVE runs on many platforms, including SGI, Solaris, WindowsNT and Linux.
• If you know Tcl it is relatively easy to assign dynamic behaviour and interactivity to any

DIVE object. If you know Tk, you can write GUIs for any DIVE object.
• You can develop new DIVE applications. There are three main ways to do this: Create a

new GUI for the diva program with Tcl/Tk, link a C program with the DIVE libraries,
or communicate with DIVE through TCP/IP.

Relationship between DIVE binaries

The main binaries that are distributed with DIVE are:

• diva - A DIVE application that implements a 3D graphics and sound interface. diva is
basically an advanced browser for DIVE worlds.

• diveserver - A server that contains a list of DIVE applications and the VR worlds
they are viewing.

• proxyserver - The proxyserver relays messages between networks that support IP
multicast and networks that don't. DIVE applications use a peer-to-peer communication
model, which means that all DIVE applications keeps a copy of the environment and the
state of its objects. IP multicast is used to send messages between the applications. If a

CID-60 • A Practician's Guide to DIVE 7 (25)

network doesn't support multicast, the proxyserver can be used to relay messages to one
that does.

These and other DIVE binaries are described in detail in [6]. To set up a multi-user DIVE
session, you typically have to do the following:

• Start diveserver. The diveserver keeps a list of DIVE worlds and IP multicast
groups, as illustrated in figure 1. When a DIVE application connects to the server, it tells
the server which world it is viewing. If the world is among the worlds in the server list, the
server responds with a message containing an IP multicast group. The group contains all
DIVE applications that views the world. When started, diveserver will respond with
something like

*** The Dive name server ***
Olof Hagsand - olof@sics.se
Emmanuel Frécon - emmanuel@sics.se

Own address: 130.237.228.72:3177

You'll need the server's "own address" when you start the DIVE application. In the
example above, 130.237.228.72 is the address and 3177 is the port.

• If your computer is on a network that doesn't support IP multicast, you must use the
proxyserver. The proxyserver acts as a broker between multicast networks
and non-multicast networks, as illustrated in figure 2. It connects to the diveserver
as a DIVE application and forwards any messages it receives to the clients on the non-
multicast network. This means that the proxyserver must be started on a computer
that is connected to a multicast network.

• Start a DIVE application, in this case diva. When diva is started, it executes a Tcl/Tk
script once. The script is responsible for, among other things, creating a GUI. You can
specify which script to run in two ways:
• Change the name of the diva executable or create a symbolic link to it under a

different name. In Unix, for example, you could say

ln -s ./diva ./foo

to create a link to diva called foo. When you start foo, it will load the script
called foo_init.tcl. Generally, if the diva executable is named name, the
Tcl/Tk script name_init.tcl will be loaded. When no script is specified, diva
loads a script called blind_init.tcl that creates a non-graphical browser with
audio capabilities. There is a script called vishnu_init.tcl that creates a
graphical browser with an advanced user interface. Normally a symbolic link to diva
named vishnu is created when DIVE is installed.

8 (25) CID-60 • A Practician's Guide to DIVE

• Use the -init-script command line parameter, i.e.

diva -init-script myscript.tcl

Since we want to use the DIVE application in a multi-user environment, we must let it
know where the diveserver is. This is done through the
-nameserver_addr and -nameserver_port command line parameters. To
connect to a diveserver with "own address" 130.237.228.72:3177, you say

vishnu -nameserver_addr 130.237.228.72 -
nameserver_port 3177

From now on, it is assumed that vishnu is used to view DIVE worlds.

Figure 1. Organization of the diveserver and DIVE applications in multi-user mode.

diva

diveserver

"world1"

"world2"

"world3"

multicast addr

multicast addr

multicast addr

diva

diva

diva

"world2"
Will talk to peers in

this multicast group.

CID-60 • A Practician's Guide to DIVE 9 (25)

Figure 2. The DIVE proxyserver acts as a broker for networks without multicast.

DIVE worlds

When you start vishnu, you need to specify which world to view. Worlds are described in
object definition files (in DIVE, every world is also a DIVE object). All object definition files
have a .vr extension. To specify a world to view in vishnu, you use the -world
command line option. If you don't specify a world, vishnu will view a world called
tutorial.vr. To view a world called foo.vr you say

vishnu -world foo.vr

In a multi-user environment, vishnu checks with the diveserver if the world is viewed
in a vishnu browser somewhere else. If it is, the world description is fetched from that
browser, not from the object definition file.

The object definition file must reside in the current DIVE directory search path. See [7]
for more information on how to set the search path. Note that you need to include ./
explicitly in the search path if you want vishnu to look for files in the current directory. Also
note that vishnu searches the directories in the same order as they appear in the DIVE
search path. If the object definition file resides on a WWW server, you can specify it using its
URL. For example,

vishnu -world
http://www.nada.kth.se/~gustavt/dive/foo.vr

Whenever something in a world changes, the change is distributed to all DIVE
applications that are viewing the world. This means that the world is "alive" as long as there is

diva
diva

diva

diva

proxyserver

diva

Multicast

network

Non-

multicast

network

proxyserver

10 (25) CID-60 • A Practician's Guide to DIVE

at least one DIVE application that views it. When all DIVE applications have exited the world,
its current state is lost. In other words, DIVE worlds are not persistent. It is possible,
however, to save the current world state to disc as an object definition file that could be
loaded at a later time.

Object definition files

In DIVE, everything is an object, including the world itself. The difference between an ordinary
object and a world object is that the world object contains a set of special parameters. These
includes the color of the background and the point where users enter the world. The DIVE
world database is hierarchial: the entire world is described through child objects of a special
root node. Every node has one parent (except for the root node) and every node can have an
unlimited number of children. The object definition file format is described in detail in [2].

All object definition files are run through a C preprocessor before they are interpreted by
vishnu. That means that you can include files and use text macros in exactly the same way
as in C and that standard C comments can be used. There is a file called dive.vh that you
should #include in all your world and object definition files, since it defines some
important text constants. The object definition file syntax will not be repeated here. Instead,
this text concentrates on specific issues that the official DIVE documentation omits.

Scale of DIVE worlds
One unit in DIVE corresponds to approximately one meter. For example, the height of the
"Blockie '95" user representation at the podium in the tutorial.vr world, is 2 meters.

Newlines at end of files
All object definition files must end with a newline, otherwise the following error is generated:

cpp: No pp_newline at end of file

It is unclear whether it really matters if all files have a newline at the end, but it seems as if
DIVE applications are more stable if they do.

Whitespaces after linebreaks
If you use the \ (backslash) character to indicate a line break in an object definition file or a
Tcl file, you must make sure that there are no whitespace characters after it. If there is, the
following error is generated:

Skipping illegal input '\'.

Vector, texture coordinate and normal specification
Vectors / points, texture coordinates and normals are specified by adding v, t and n in front
of the elements, respectively, as in

view {
 RBOX

CID-60 • A Practician's Guide to DIVE 11 (25)

 v -1 -1 -1
 v 1 1 1
}

Note, however, that this syntax is not used consistently throughout the DIVE object file
format. In the world definition, for example, the start point of the user is defined by

start v x y z

while the position of the global light source is defined by

position x y z

Note that for stand-alone N-POLY polygons, it is allowed to include texture coordinates for
every vertex, but incorrect to include any normal information whatsoever. Thus, it is correct to
write

view {
 N_POLY 3

 v 1 0 0 t 0.0 0.0
 v 0 1 0 t 0.5 1.0
 v 0 0 1 t 1.0 0.0
}

but incorrect to write

view {
 N_POLY 3

 v 1 0 0 t 0.0 0.0 n 0 1 0
 v 0 1 0 t 0.5 1.0 n 0 0 1
 v 0 0 1 t 1.0 0.0 n 1 0 0
}

If you want to specify normals, you must use N_M_POLY, i.e.,

12 (25) CID-60 • A Practician's Guide to DIVE

view {
 N_M_POLY 1 3 (T_PER_VERTEX + N_PER_VERTEX)

 N_POLY 3

 v 1 0 0 t 0.0 0.0 n 0 1 0
 v 0 1 0 t 0.5 1.0 n 0 0 1
 v 0 0 1 t 1.0 0.0 n 1 0 0
}

"object" vs. "subs object"
The correct way to declare a sub-object is to write

object {
 object {
 }
}

The following syntax is obsolete, even though it is used in some places in the available
documentation and example code:

object {
 subs object {
 }
}

Using subs object doesn't generate an error, but the file may be incompatible with later
releases of DIVE.

World declaration
If the world name contains too many characters, the following error message is generated:

DIVE warning:
 TCL error: can't read "endofwname": no such variable
 while executing: world_url_msg ACTOR_MIGRATE_EVENT
...

The global light source position is a positional light source, not a directional light source. Thus,
using the default location (-3 2 -1) will often result in strange-looking lighting of objects.

Backface culling
The backface culling flag syntax is somewhat ambigous. To enable backface culling, you write

nobackface off

CID-60 • A Practician's Guide to DIVE 13 (25)

To disable backface culling, i.e. to always render polygons no matter which way they are
facing, you write

nobackface on

Graspable objects
It is not possible to make a sub-object ungraspable. Thus, the following object will be
graspable, even though nograsp on is used:

object {
 object {
 nograsp on
 view {
 RBOX v 0 0 0 v 1 1 1
 }
 }
 view {
 RBOX v -1 -1 -1 v 0 0 0
 }
}

To make the object ungraspable, you can write

object {
 nograsp on
 object {
 view {
 RBOX v 0 0 0 v 1 1 1
 }
 }
 view {
 RBOX v -1 -1 -1 v 0 0 0
 }
}

The DIVE/Tcl interface

In DIVE, you can define the behaviour of an object by including a Tcl script in its object
definition file. When the object definition file is read, the Tcl script is interpreted once
(although, as we shall see, DIVE events can cause procedures defined in the script to be
invoked repeatedly). In multi-user situations, the Tcl files assigned to objects that are sent
across the network are interpreted once in each DIVE application. In addition to the standard
Tcl command set, a number of DIVE-specific commands have been added. These are
described in [5].

14 (25) CID-60 • A Practician's Guide to DIVE

It is important to understand how DIVE works in multi-user situations. The distribution
model of DIVE is peer-to-peer, which means that every DIVE application keeps its own copy
of the world database, as illustrated in figure 3. When the state of an object changes in one
DIVE application, the change is distributed to all connected applications.

Figure 3. DIVE uses a peer-to-peer network distribution model.

Properties, variable scope and events
The Tcl code of each DIVE object (including sub-objects) runs in its own Tcl interpreter. This
means that global Tcl variables cannot be seen outside the scope of the object's Tcl code.
Global Tcl varaiables are not distributed among DIVE applications. Therefore, the contents of
a global variable can differ between distributed copies of the same object, as illustrated in
figure 4.

Figure 4. Global Tcl variables can have different values in different DIVE applications.

world database

object diva

world database

objectdiva

world database

object A

diva divaTcl interpreter

foo: 10

world database

object A

Tcl interpreter

foo: 3

CID-60 • A Practician's Guide to DIVE 15 (25)

In order to share variable information between objects, properties must be used. A
property is a distributed DIVE variable that is associated with a DIVE object. When a
property has been created in one DIVE application, it is automatically created in all connected
applications. When the value of a property changes, the change is distributed to all connected
applications. This is illustrated in figure 5.

Figure 5. The value of properties are synchronized across all communicating DIVE applications.

As an example, the source code for a digital stopwatch is presented in Appendix A. The
stopwatch can be started and stopped by clicking on it. When running, it continously polls the
system time and notes when the value of the seconds change. When this happens, one second
is added to the stopwatch time and the display is updated. The stopwatch uses four properties:

• active - 1 if the stopwatch is running, 0 otherwise.
• hrs - The number of hours the stopwatch has been running.
• min - The number of minutes the stopwatch has been running.
• sec - The number of seconds the stopwatch has been running.

Note that the active flag must be a property rather than a Tcl/Tk global variable - if not,
the result might be that the same stopwatch is running in one DIVE application and is idle in
another. The same applies to the other properties as well.

When there is a change of state in the database belonging to a DIVE application, an
event is generated. Objects can register an event callback, a function that is invoked when a
specified event is generated. When an object registers a callback, the callback is automatically
registered in all connected DIVE applications. However, when an event is generated in an
application, only the callbacks of the objects in that application will be invoked. In other
words, events are not distributed. This means, for example, that clicking on an object in a
vishnu browser will generate an event in that browser only, not in any other connected
applications. This behavior can be overridden for an object by using the proc_bound
command in its definition file. If an object is proc_bound, all Tcl code that is associated
with that object runs in the DIVE application in which the object was originally created. This

world database

object A
diva diva

Tcl interpreter

foo: 10

Property foo
7

world database

object A

Tcl interpreter

foo: 3

Property foo
7

16 (25) CID-60 • A Practician's Guide to DIVE

means, for example, that if a proc_bound object has registered a callback for interaction
events and a user clicks on the object, the callback will be executed in the appropriate Tcl
interpreter in the application that created the object, not necessarily in the application from
which the object was clicked on.

A timer is an event factory that generates events at regular intervals. Timers are special in
the sense that when they are created, it is unspecified in which DIVE application they will
execute. Also, when a timer is running in an application and that application disconnects from
the network, the timer is transferred to one of the remaining applications. The stopwatch needs
callbacks for two event types: the interaction event and a timer event. The interaction event is
generated when the user clicks with the left mouse button on an object.

Since each DIVE application keeps its own copy of the world database and DIVE/Tcl
scripts are executed locally, there will - inevitably - be times when the contents of the local
databases differ. That is, you can't assume that a new value of a property is updated instantly
in all connected databases. Therefore, you should take care when writing applications that
changes the contents of the database often. If you're changing the database faster than the
changes can be distributed you'll probably end up with a paradox situation sooner or later.
This is a problem that's inherent in all programs that use the peer-to-peer communication
model and cannot really be avoided. Therefore, if you need to make frequent changes to the
contents of the world database (or if you're on a slow network), DIVE may not be the
appropriate platform to use.

A final word on properties: there is a DIVE/Tcl command,
dive_property_link, that links a global Tcl variable to a property. When the
contents of the variable is changed, the property is updated automatically. Since the contents
of a global Tcl variable can differ between DIVE applications, you should use this command
with care. Also note that you need to create the link in all the connected applications.

"dive_send" vs. "dive_call"
When you invoke a number of consecutive dive_send commands in a behaviour script,
there is no guarantee that the function calls will be executed in the same order as they were
given. If you want to make sure that the calls arrive in the correct order, use dive_call.

Creating new objects on-the-fly
There are two different ways to create new objects from the behaviour code of an object. The
simplest way is to parse a URL by using the dive_readURL commands. The drawback
of this method is that the specifications of the new object is defined by the contents of the file
that is read. The alternative is to use dive_parse_string. The following code
fragment will create a new sphere with variable radius:

CID-60 • A Practician's Guide to DIVE 17 (25)

proc add_new_sphere {parent x y z} {
 set string "object { view { SPH $x $y $z } }"
 set sphere [dive_parse_string $parent \
 "x-world/x-dive" "$string"]
}

Note, though, that the sphere isn't created immediately. Therefore, it is incorrect to write

proc add_new_sphere {parent x y z} {
 set string "object { view { SPH $x $y $z } }"
 set sphere [dive_parse_string $parent \
 "x-world/x-dive" "$string"]
 dive_abs_move $sphere 1 0 0 WORLD_C
}

The correct way to handle this situation is to let the sphere create an ENTITY_NEW event
callback for itself. Note though, that DIVE doesn't support the begin.tcl and
end.tcl tags when creating new objects with dive_parse_string, so you have to
use a separate Tcl file for the code. For example, if the file foo.tcl contains

on_new {t i o} {
 dive_abs_move [dive_self] 1 0 0 WORLD_C
}
dive_register ENTITY_NEW_EVENT NULL [dive_self] ""
on_new

you can say

proc add_new_sphere {parent x y z} {
 set tcl_code "inline.tcl \"foo.tcl\""
 set string "object { view { SPH $x $y $z } $tcl_code
}"
 set sphere [dive_parse_string $parent \
 "x-world/x-dive" "$string"]
}

Level-of-detail
Be careful when you assign level-of-detail information to objects. For example, when the
following object is inserted into a DIVE world, only the first sub-object responds to mouse
clicks:

18 (25) CID-60 • A Practician's Guide to DIVE

object {
 lod {
 range { 20 }
 object {
 view {

 RBOX v 0 0 0 v 1 1 1
 }

 }
 object {
 view {
 RBOX v -1 -1 -1 v 0 0 0

 }
 }
 }

 begin.tcl
 proc on_click {event vid type origin src_id x y z} {
 puts "click"
 }
 dive_register INTERACTION_SIGNAL DIVE_IA_SELECT \
 [dive_self] "" on_click
 end.tcl
}

Also note that Tcl global variables declared in one LOD sub-object isn't visible in other LOD
sub-objects.

Database navigation
When you navigate through the DIVE world database using dive_find commands, you
should be aware that searching from the root node can give unexpected results. The reason is
that the user may create several copies of the same object. If, for example, several copies of
an object named foo exists in the database, it is unspecified which of them that is returned if
you start searching for foo from the root. So avoid writing

CID-60 • A Practician's Guide to DIVE 19 (25)

object {
 name "my_object"

 object {
 name "sub_object1"
 begin.tcl
 proc my_proc {} {
 set root [dive_find_root]

 set my_object [dive_find_sub_byname $root
"my_object"]

 set sub_object2 [dive_find_sub_byname \
 $my_object "sub_object2"]
 }
 end.tcl
 }

 object {
 name "sub_object2"
 }
}

since if there are several objects in the database named my_object, the code may fail. A
more robust way to do this is

object {
 name "my_object"

 object {
 name "sub_object1"
 begin.tcl
 proc my_proc {} {
 set parent [dive_find_super [dive_self]]

 set sub_object2 [dive_find_sub_byname \
 $parent "sub_object2"]
 }
 end.tcl
 }

 object {
 name "sub_object2"
 }
}

20 (25) CID-60 • A Practician's Guide to DIVE

Relationship between transformations and object info
When you apply translation or rotation to DIVE objects, the corresponding transformation
matrices are multiplied together incrementally and stored internally in the object in two special
matrices, a translation matrix and a rotation matrix. There are two versions of each of these
matrices:

• The world coordinate system version that describes how points given in the object's
coordinate system are transformed into the world coordinate system.

• The local coordinate system version that describes how points given in the object's
coordinate system are transformed into its parent's coordinate system.

The dive_entity_info command can be used to retreive these matrices from an
object. The translation matrix is given as a (x y z) value (i.e. the translation distance along each
of the three coordinate axes). The rotation matrix is given as a 3x3 matrix, stored in column
order (Fortran order). For example, the lists

{a b c} {d e f} {g h i}

corresponds to the matrix

a d g
b e h
c f i

There is no built-in way to obtain the inverse to the matrices. Calculating them is not difficult,
however. Calculating the inverse of a translation is trivial and since rotation matrices are
orthogonal, the inverse of a rotation matrix is simply its transpose. A Tcl function,
untransform, that calculates the inverse of a DIVE transformation is listed in Appendix
A.

Note that there is no scaling matrix. The command dive_scale can be used to scale
an object, but only relative to its current size. Absolute scaling of objects is not supported, nor
is there a way of obtaining the scaling information of a DIVE object.

Adding objects to the visor
In DIVE version 3.3x, you can add objects to the visor of an actor. It is important to
remember, however, that once an object has been added to the visor, it only exists in the
DIVE application that added it to its visor. Changes made to visor objects are not distributed.
If you want to change a visor object that exists in a remote DIVE application, you have to add
a function to the actor that is associated with the remote application and use dive_call.

Keyboard repeat
When a DIVE application starts, the keyboard repeat is deactivated. If the application
crashes, the keyboard repeat is sometimes not restored. When this happens, start vishnu
with the tutorial world and exit immediately to restore the keyboard repeat.

CID-60 • A Practician's Guide to DIVE 21 (25)

References

[1] ActiveWorlds. http://www.activeworlds.com/
[2] Avatare, Frécon, Hagsand, Jää-Aro, Simsarian, Stenius, Ståhl. DIVE - The

Distributed Interactive Virtual Environment - DIVE Files Description for DIVE
version 3.3x.
http://www.sics.se/dive/manual/dive_file_format.html

[3] Carlsson & Hagsand (1993) "DIVE - A Multi User Virtual Reality System". IEEE
VRAIS, September 1993.

[4] Carlsson & Hagsand (1993) "DIVE - A Platform for Multi-User Virtual
Environments". Computers and Graphics, 17(6), 1993.

[5] Frécon, Hagsand, Hansson, Stenius, Ståhl, Wallberg. Dive/Tcl Reference Manual.
http://www.sics.se/dive/manual/tclref.html

[6] Frécon & Hagsand (1997) Dive Applications.
http://www.sics.se/dive/manual/application.html

[7] Frécon & Hagsand (1997) Dive Installation. Technical Memo.
http://www.sics.se/dive/manual/install.html

[8] Hagsand (1996) "Interactive Multi-User VEs in the DIVE System". IEEE
Multimedia Magazine, 3(1), 1996.

[9] Osterhaut (1994) Tcl and the Tk Toolkit. Addison Wesley.
[10] Tcl/Tk distribution and documentation. http://www.scriptics.com/

22 (25) CID-60 • A Practician's Guide to DIVE

Appendix A - Source code

Stopwatch

#include "dive.vh"

#define STOPWATCH_HEIGHT 0.1

object {
 name "stopwatch"

 /* The view sub-objects define the appearance of the stopwatch
 * in the world. The first sub-object is the stopwatch text. It
 * is set to "00:00:00" initially. Note that the view is named.
 * This is because we want to change the text string later. The
 * second sub-object is the stopwatch case.
 */

 object {
material "white"
view {
 name "text"
 CTEXT STOPWATCH_HEIGHT
 "00:00:00" "default"
}

 }

 object {
material "red"
view {
 RBOX
 v (STOPWATCH_HEIGHT * -3.5) (-STOPWATCH_HEIGHT) -0.01
 v (STOPWATCH_HEIGHT * 3.5) (1.5 * STOPWATCH_HEIGHT) -0.1
}

 }

 /* Here is the behaviour for the stopwatch: */

 begin.tcl

 /* This function updates the time display on the stopwatch. */

 proc display_time {hrs min sec} {
if {$hrs < 10} {
 set hrs "0$hrs"
}
if {$min < 10} {
 set min "0$min"
}
if {$sec < 10} {
 set sec "0$sec"
}

CID-60 • A Practician's Guide to DIVE 23 (25)

set view [dive_find_sub_byname [dive_self] "text"]
dive_text $view "$hrs:$min:$sec"

 }

 /* This function removes initial zeros in numbers. Example:
 * 08 -> 8. It is used to convert the output from dive_date. If
 * the initial zero isn't removed, 01-09 are interpreted as
 * octal numbers and syntax errors are genereted whenever Tcl sees
 * 08 and 09 are seen (since they are invalid octal numbers).
 */

 proc stripzeros {value} {
regsub ^0+(.+) $value \\1 retval
return $retval

 }

 /* A DIVE timer is set up to invoke this function every 100
 * milliseconds if the stopwatch is running. If the system
 * time has changed since the last time the function was
 * invoked, the stopwatch time is updated.
 */

 proc on_timer {} {
global last_sec

set sw_hrs [dive_property_get [dive_self] "hrs"]
set sw_min [dive_property_get [dive_self] "min"]
set sw_sec [dive_property_get [dive_self] "sec"]

set sec [stripzeros [dive_date %S]]

if {$sec != $last_sec} {
 set sw_sec [expr $sw_sec + 1]
 if {$sw_sec == 60} {

set sw_sec 0
set sw_min [expr $sw_min + 1]

 }
 if {$sw_min == 60} {

set sw_min 0
set sw_hrs [expr $sw_hrs + 1]

 }
 display_time $sw_hrs $sw_min $sw_sec
}

dive_property_put [dive_self] "hrs" $sw_hrs
dive_property_put [dive_self] "min" $sw_min
dive_property_put [dive_self] "sec" $sw_sec

set last_sec $sec
 }

 /* This function is the callback for the interaction event, i.e.
 * the event that is generated when the user clicks on the
 * stopwatch. It toggles the "active" property. If the
 * stopwatch is started, a timer is registered, otherwise
 * the timer is deregistered.
 */

24 (25) CID-60 • A Practician's Guide to DIVE

 proc on_click {event vid type origin src_id x y z} {
global last_sec

set active [dive_property_get [dive_self] "active"]
set active [expr 1 - $active]
dive_property_put [dive_self] "active" $active

if {$active == 1} {
 dive_property_put [dive_self] "hrs" 0
 dive_property_put [dive_self] "min" 0
 dive_property_put [dive_self] "sec" 0
 set last_sec [stripzeros [dive_date %S]]
 dive_timer [dive_self] 100 "on_timer"
} else {
 dive_time_deregister [dive_self] "on_timer"
}

 }

 /* This function is the callback for the ENTITY_NEW event. It
 * creates the properties needed for the stopwatch. It also
 * registers a callback for interaction events, i.e. when the
 * user clicks on the stopwatch.
 */

 proc on_new {type id origin} {
dive_property_create [dive_self] "active" string 0
dive_property_create [dive_self] "hrs" string 0
dive_property_create [dive_self] "min" string 0
dive_property_create [dive_self] "sec" string 0

dive_register INTERACTION_SIGNAL DIVE_IA_SELECT [dive_self] \
 "" on_click

 }

 /* This code is invoked by all DIVE applications that loads the
 * stopwatch. We cannot create properties here since that would
 * result in multiple copies of the same property. The correct
 * way to solve this problem is to register a callback procedure
 * for the ENTITY_NEW event and create the properties there.
 * The ENTITY_NEW event is generated when an object has been
 * created. When the object has been created it is distributed to
 * all connected applications. The global Tcl variable "last_sec"
 * must be created here since it has to exist in the interpreter
 * of all distributed copies of the stopwatch object.
 */

 global last_sec
 set last_sec 0

 dive_register ENTITY_NEW_EVENT NULL [dive_self] "" on_new

 end.tcl
}

CID-60 • A Practician's Guide to DIVE 25 (25)

Untransform

#
untransform
#
Transform a point from the world coordinate system into
the local coordinate system of an entity.
#
The result is stored in the global varaibles
untransform_x, untransform_y and untransform_z.
#

proc untransform {entity x y z} {
 global untransform_x
 global untransform_y
 global untransform_z

 dive_entity_info $entity info

 scan $info(T0) "%f %f %f" tx ty tz

 set a [lindex [lindex $info(R0) 0] 0]
 set b [lindex [lindex $info(R0) 0] 1]
 set c [lindex [lindex $info(R0) 0] 2]
 set d [lindex [lindex $info(R0) 1] 0]
 set e [lindex [lindex $info(R0) 1] 1]
 set f [lindex [lindex $info(R0) 1] 2]
 set g [lindex [lindex $info(R0) 2] 0]
 set h [lindex [lindex $info(R0) 2] 1]
 set i [lindex [lindex $info(R0) 2] 2]

 set u_x [expr ($a * $x) + ($b * $y) + ($c * $z)]
 set u_y [expr ($d * $x) + ($e * $y) + ($f * $z)]
 set u_z [expr ($g * $x) + ($h * $y) + ($i * $z)]

 set tmp_x [expr ($a * $tx) + ($b * $ty) + ($c * $tz)]
 set tmp_y [expr ($d * $tx) + ($e * $ty) + ($f * $tz)]
 set tmp_z [expr ($g * $tx) + ($h * $ty) + ($i * $tz)]

 set untransform_x [expr $u_x - $tmp_x]
 set untransform_y [expr $u_y - $tmp_y]
 set untransform_z [expr $u_z - $tmp_z]
}

