/J{Jm l o~ ”Q&\
j VETéﬁsHW?@ KUNGLTEKNISKA HOGSKOLAN

KONST
Q’i”f “?} Royal Institute of Technology

Qﬁ\ f;? Numerical Analysis and Computing Science

TRITA-NA-D0002 « CID-60, KTH, Stockholm, Sweden 2000

A Practician's Guide to DIVE
Gustav Taxén

Gustav Taxén

A Practician's Guide to DIVE

Report number: TRITA-NA-D0002, CID-60
ISSN number: ISSN 1403-073X

Publication date: January 2000

E-mail of author: gustavt@nada.kth.se

URL of author: http://www.nada.kth.se/~gustavt

Contents

INTRODUCTION......coicieiierieietreseesee s sessess s esse e sessses e s es s s ss e ee s s s e e s e s s se s s s e s s e s s nesseseesessensns 6
RELATIONSHIP BETWEEN DIVE BINARIES.........oo e 6
DIVE WORLDS ..o b bbb bbb s 9
OBJECT DEFINITION FILES ..ottt sss st ssssesans 10
SCALE OF DIVEWORLDSoitiitiisin s

NEWLINES AT END OF FILES.........c.cocue.
WHITESPACES AFTER LINEBREAKS
VECTOR, TEXTURE COORDINATE AND NORMAL SPECIFICATION.....
"OBJECT" VS "SUBS OBJECT"
WORLD DECLARATION
BACKFACE CULLING............

GRASPABLE OBJIECTS.....cuituteetreeasseesestaseessesesssessesessse sttt sssssessssesssesasstsssssessssssesssstsssesassesssssesssnssesssssnssssesns

THE DIVE/TCL INTERFACE ...ttt s st ss st essessessessesnesnesssssssans 13

PROPERTIES, VARIABLE SCOPE AND EVENTS ..ot sesssssssssssssees 14
"DIVE_SEND" VS "DIVE _CALL" ...ttt s

CREATING NEW OBJECTS ON-THE-FLY
LEVEL-OF -DETAIL ...tititiirtrerereseseststseseseseseses sttt se e se st s e se s se et sse s e s s ee bbb ee b et b eeee bbb et b b ne e ettt es
DATABASE NAVIGATIONoitietitsiresesisiseseststsesss s sesssssesesssssesesssssssesssssssesssssssessnes
RELATIONSHIP BETWEEN TRANSFORMATIONS AND OBJECT INFO
ADDING OBJIECTS TO THE VISOR......ctitiiieiiiiiiieieitisieessieieiesssese s ssss s s s ssss e sase e ssssnesasssssenas
KEYBOARD REPEAT ..ottt ittt st ss s se s s ss s sa 0000100800088 s e 88 b s s na b b s e n s s e n s

REFERENCES........coitit it s bbb b bbb 21

APPENDIX A - SOURCE CODE........coooiiiiiiiiis st ssssens 22

STOPWATCH ettt ettt ettt 2
UNTRANSFORMcotiiiiiiririrtsiseses sttt sttt e st se e e e e s s s se st £ £ s e s e £ s 8 s e s e e £ £ e e e e bt e ee et b eeee e b b sb et et et ssee et esnses 25

CID-60 * A Practician's Guide to DIVE 5(25)

A Practitian's Guide to DIVE

Introduction

This report presents solutions to practical problems often encountered when building
interactive virtud environmentsin DIVE [3][4][8]. It isintended for people that have tried
navigating with the vishnu browser in single-user mode and want to know how to set up DIVE
for multi-user environments or want to creste their own DIVE worlds. To creste DIVE
worlds, abasic knowledge of Tcl/Tk [9] isrequired. There are plenty of Tcl/Tk tutorias
avallable on the WWW; good place to start is the Scriptics website [10].

DIVE should not be thought of as an application or a program. It is more correct to say
that DIVE isa protocol for manipulating and viewing virtud worlds. The protocol is
implemented in a set of programming libraries that can be used to creete applications. In this
text, aDIVE gpplication is defined as an application that "knows' about the DIV E protocol
and can talk to other DIVE gpplications.

There are four main reasonswhy DIVE is & least asinteresting as Smilar products such
asActiveWorlds [1]:

DIVE isfreefor non-commercid use.

DIVE runs on many platforms, including SGI, Solaris, WindowsNT and Linux.

If you know Tdl it isreatively easy to assgn dynamic behaviour and interactivity to any
DIVE object. If you know Tk, you can write GUIs for any DIVE object.

Y ou can develop new DIVE applications. There are three main ways to do this. Create a
new GUI for thedi va program with Tcl/Tk, link a C program with the DIVE libraries,
or communicate with DIVE through TCP/IP.

Relationship between DIVE binaries
The main binaries that are distributed with DIVE are:

di va - A DIVE gpplication that implements a 3D graphics and sound interface. di va is
basically an advanced browser for DIVE worlds.

di veserver - A sarver that containsalist of DIVE applications and the VR worlds
they are viewing.

proxyserver - The proxyserver relays messages between networks that support IP
multicast and networks that don't. DIV E gpplications use a peer-to-peer communication
modd, which means that al DIVE applications keeps a copy of the environment and the
date of its objects. IP multicast is used to send messages between the applications. If a

6 (25) CID-60 » A Practician's Guide to DIVE

network doesn't support multicast, the proxyserver can be used to relay messagesto one
that does.

These and other DIVE binaries are described in detail in [6]. To set up amulti-user DIVE
session, you typicdly have to do the following:

Startdi veserver.Thedi veser ver kegpsalig of DIVE worlds and IP multicast
groups, asillugrated in figure 1. When a DIVE gpplication connects to the server, it tells
the server which world it is viewing. If the world isamong the worlds in the server lig, the
server responds with amessage containing an |P multicast group. The group contains dl
DIVE applications that views the world. When garted, di veser ver will respond with
something like

*** The Di ve nane server ***
O of Hagsand - ol of @i cs. se
Emmanuel Frécon - emmnuel @i cs. se

Om address: 130.237.228.72:3177

You'l need the server's "own address’ when you start the DIVE gpplication. In the
example above, 130.237.228.72 isthe address and 3177 isthe port.
If your computer is on anetwork that doesn't support |P multicast, you must use the
proxyserver.Thepr oxyser ver actsasabroker between multicast networks
and non-multicast networks, asillugrated in figure 2. It connectsto thedi veser ver
as aDIVE application and forwards any messages it receives to the clients on the non-
multicast network. Thismeansthat thepr oxyser ver must be started on a computer
that is connected to a multicast network.
Stat aDIVE application, inthiscasedi va. When di va isdarted, it executesa Tcl/Tk
script once. The script is responsible for, among other things, creating a GUI. You can
speufy which script to run in two ways.
Change the name of thedi va executable or create a symbalic link to it under a
different name. In Unix, for example, you could say

In -s ./diva ./foo

to createalink todi va caledf oo. Whenyou start f 00, it will load the script
cdledf oo_init.tcl.Genedly,if thedi va executableis named name, the
To/Tk scriptname_i ni t . t ¢l will beloaded. When no script is specified, di va
loadsascript cdled bl i nd_i nit. tcl that createsanon-graphica browser with
audio capabilities Thereisascript cdledvi shnu_i ni t. t cl that createsa
graphica browser with an advanced user interface. Normally asymboliclink todi va
named vi shnu iscreated when DIVE isingaled.

CID-60 * A Practician's Guide to DIVE 7 (25)

Usethe-i nit-scri pt command line parameter, i.e.

diva -init-script nyscript.tcl
Since we want to use the DIVE gpplication in a multi-user environment, we must let it
know wherethedi veser ver is Thisisdonethrough the
-naneserver _addr and- nanmeserver _port command line parameters. To

connecttoadi veser ver with"own address' 130.237.228.72:3177, you say

vi shnu -naneserver _addr 130.237.228.72 -
nameserver _port 3177

From now on, it isassumed that vi shnu isused to view DIVE worlds.

di va

- Will talk to peersin
"wor | d2"¢ N _ thismulticast group.

~

di va |
I—I:
w diva M

"worl d1" | multicast addr // —|

"wor | d2" mul ticast addr [di va [

di veserver

"wor | d3" mul ti cast addr

Figure 1. Organization of the diveserver and DIVE applications in multi-user mode.

8 (25) CID-60 » A Practician's Guide to DIVE

pr oxyserver Multicast
i network
Non-
proxyserver multicast
I network
di va

Figure 2. The DIVE proxyserver acts as a broker for networ ks without multicast.

DIVE worlds

When you start vi shnu, you need to specify which world to view. Worlds are described in
object definition files (in DIVE, every world isaso aDIVE object). All object definition files
havea. vr extenson. To specify aworldtoview invi shnu, you usethe- wor | d
command line option. If you don't specify aworld, vi shnu will view aworld cdled
tutorial.vr.Toviewaworldcdledf oo. vr you say

vishnu -world foo.vr

In amulti-user environment, vi shnu checkswiththedi veser ver if theworld isviewed
inavi shnu browser somewhere dse. If it is, the world description is fetched from that
browser, not from the object definition file.

The object definition file must resde in the current DIVE directory search path. See[7]
for more information on how to set the search path. Note that you need to include . /
explictly in the search path if you want vi shnu to look for filesin the current directory. Also
notethat vi shnu searchesthe directoriesin the same order as they appear inthe DIVE
search path. If the object definition file resdes on aWWW sarver, you can specify it usang its
URL. For example,

vishnu -worl d
http://ww. nada. kt h. se/ ~gustavt/di ve/ foo. vr

Whenever something in aworld changes, the change is distributed to dl DIVE
aoplications that are viewing the world. This means thet the world is"dive" aslong asthereis

CID-60 * A Practician's Guide to DIVE 9 (25)

a least one DIVE gpplication that viewsit. When al DIV E gpplications have exited the world,
its current state islost. In other words, DIVE worlds are not persstent. It is possible,
however, to save the current world state to disc as an object definition file that could be
loaded &t alater time.

Object definition files

In DIVE, everything is an object, including the world itsdlf. The difference between an ordinary
object and aworld object is that the world object contains a set of special parameters. These
includes the color of the background and the point where users enter the world. The DIVE
world database is hierarchid: the entire world is described through child objects of a specid
root node. Every node has one parent (except for the root node) and every node can have an
unlimited number of children. The object definition file format is described in detall in [2].

All object definition files are run through a C preprocessor before they are interpreted by
vi shnu. That meansthat you can include files and use text macros in exactly the same way
asin C and that standard C comments can be used. Thereisafilecdled di ve. vh tha you
should#i ncl ude indl your world and object definition files, Snceit defines some
important text constants. The object definition file syntax will not be repeated here. Instead,
this text concentrates on specific issues that the official DIV E documentation omits.

Scale of DIVE worlds
One unit in DIVE corresponds to gpproximately one meter. For example, the height of the
"Blockie'95" user representation at the podiuminthet ut ori al . vr world, is2 meters.

Newlines at end of files
All object definition files must end with a newline, otherwise the following error is generated:

cpp: No pp_newline at end of file

It isunclear whether it redly mattersif dl files have anewline a the end, but it ssems asiif
DIVE applications are more stable if they do.

Whitespaces after linebreaks

If you usethe\ (backdash) character to indicate aline break in an object definition fileor a
Tdl file, you must make sure that there are no whitespace characters efter it. If thereis, the
following error is generated:

Ski pping illegal input "\'.

Vector, texture coordinate and normal specification

Vectors/ points, texture coordinates and normals are specified by adding v, t and n in front
of the dements, respectively, asin

vi ew {

RBOX

10 (25) CID-60 ¢ A Practician's Guide to DIVE

v-1-1-1
viii1
}

Note, however, that this syntax is not used congstently throughout the DIVE object file
format. In the world definition, for example, the start point of the user is defined by

start v Xyz

while the position of the globa light source is defined by

position xyz

Note that for stand-alone N- POLY polygons, it is alowed to include texture coordinates for

every vertex, but incorrect to include any norma information whatsoever. Thus, it is correct to
write

vi ew {
N POLY 3
vi100 0.0 0.0
vOo10 0.5 1.0
v O01 1.0 0.0
}
but incorrect to write
vi ew {
N POLY 3
vi100 0.0 0.0 n 010
vOo10 0.5 1.0 n 001
v O01 1.0 0.0 nlOO
}

If you want to specify normas, you must useN_M POLY, i.e,

CID-60 » A Practician's Guide to DIVE 11 (25)

view {
N MPOLY 1 3 (T_PER VERTEX + N_PER VERTEX)

N _POLY 3

v100 t 0.0 0.0 no1lo
vOo1o0 t 0.5 1.0 nooi
vooi1 t 1.0 0.0 nlo0o0

}

"object" vs. "subs object"
The correct way to declare a sub-object isto write

obj ect {
obj ect {
}

}

The following syntax is obsolete, even though it is used in some placesin the avallable
documentation and example code:

obj ect {
subs object {
}

}

Usngsubs obj ect doesn't generate an error, but the file may be incompatible with later
releases of DIVE.

World declaration
If the world name contains too many characters, the following error message is generated:

DI VE war ni ng:

TCL error: can't read "endofwnane": no such vari able
whi |l e executing: world url _nmsg ACTOR_M GRATE_EVENT

The globd light source position is a pogitiond light source, not adirectiond light source. Thus,
using the default location (-3 2 -1) will often result in strange-looking lighting of objects.

Backface culling
The backface culling flag syntax is somewhat ambigous. To enable backface culling, you write

nobackf ace off

12 (25) CID-60 ¢ A Practician's Guide to DIVE

To disable backface culling, i.e. to dways render polygons no matter which way they are
facing, you write

nobackf ace on
Graspable objects

It is not possible to make a sub-object ungraspable. Thus, the following object will be
graspable, eventhough nogr asp on isused.

obj ect {
obj ect {
nograsp on
vi ew {
RBOX v O0OOvVv 111
}
}
vi ew {
RBOX v -1 -1 -1 v 00O
}

}

To make the object ungraspable, you can write

obj ect {
nograsp on
obj ect {
vi ew {
RBOX v 00 0Ov 111
}
}
vi ew {
RBOX v -1 -1 -1 v 00O
}

The DIVE/Tcl interface

In DIVE, you can define the behaviour of an object by including a Tdl script in its object
definition file. When the object definition file is read, the Tcdl script is interpreted once
(athough, as we shall see, DIVE events can cause procedures defined in the script to be
invoked repegtedly). In multi-user Stuations, the Tcl files assigned to objects that are sent
across the network are interpreted once in each DIVE agpplication. In addition to the standard
Tcl command set, anumber of DIV E-specific commands have been added. These are
described in [5].

CID-60 » A Practician's Guide to DIVE 13 (25)

It isimportant to understand how DIV E works in multi-user Stuations. The digtribution
model of DIVE is peer-to-peer, which meansthat every DIVE agpplication keeps its own copy
of theworld database, asillustrated in figure 3. When the tate of an object changesin one
DIVE gpplication, the change is distributed to &l connected applications.

Figure 3. DIVE uses a peer-to-peer network distribution model.

world database

world database
object ’:| object ’:|
Properties, variable scope and events

The Tcl code of each DIVE object (including sub-objects) runsin itsown Tdl interpreter. This
means that global Tcl variables cannot be seen outside the scope of the object's Tcl code.
Globd Tcl varaiables are not distributed among DIV E applications. Therefore, the contents of
aglobd variable can differ between distributed copies of the same object, asillugtrated in

figure 4.

diva [diva

world database world database

object A object A
¢ » diva Tcl interpreter

Tcl interpreter di va

f oo: f oo:

N~ N

Figure 4. Global Tcl variables can have different valuesin different DIVE applications.

14 (25) CID-60 ¢ A Practician's Guide to DIVE

In order to share variable information between objects, properties must be used. A
property isadigributed DIVE variable that is associated with a DIVE object. When a
property has been created in one DIVE gpplication, it is automaticaly created in al connected
gpplications. When the vaue of a property changes, the change is distributed to al connected
goplications. This isillusrated in figure 5.

world database world database
object A object A
~ diva [P diva -

Tcl interpreter Tcl interpreter

f 0o: f 0o:
— —
) Y

Property f oo Property f oo
— —

Figure 5. The value of properties are synchronized across all communicating DIVE applications.

As an example, the source code for adigital stopwatch is presented in Appendix A. The
stopwatch can be started and stopped by clicking on it. When running, it continoudy pollsthe
systemn time and notes when the vaue of the seconds change. When this happens, one second
is added to the stopwatch time and the display is updated. The stopwatch uses four properties:

act i ve - 1if the sopwatch is running, O otherwise.

hr s - The number of hours the sopwatch has been running.
m n - The number of minutes the stopwatch has been running.
sec - The number of seconds the stopwatch has been running.

Notethat theact i ve flag must be a property rather than a Tcl/Tk globd variable - if nat,
the result might be that the same stopwetch is running in one DIVE gpplication and isidlein
another. The same applies to the other properties as well.

When thereis a change of sate in the database belonging to a DIVE application, an
event is generated. Objects can register an event callback, afunction that isinvoked when a
specified event is generated. When an object registers a calback, the calback is automatically
registered in al connected DIV E applications. However, when an event is generated in an
application, only the callbacks of the objects in that application will be invoked. In other
words, events are not digtributed. This means, for example, that clicking on an object ina
vi shnu browser will generate an event in that browser only, not in any other connected
gpplications. This behavior can be overridden for an object by usngthepr oc_bound
commeand in its definition file. If an object ispr oc_bound, al Tcl code that is associated
with that object runsin the DIVE application in which the object was origindly created. This

CID-60 » A Practician's Guide to DIVE 15 (25)

means, for example, that if apr oc_bound object has registered a callback for interaction
events and a user clicks on the object, the callback will be executed in the appropriate Tcl
interpreter in the gpplication that created the object, not necessarily in the gpplication from
which the object was clicked on.

A timer isan event factory that generates events a regular intervas. Timers are specid in
the sense that when they are created, it is unspecified in which DIVE application they will
execute. Also, when atimer is running in an gpplication and that gpplication disconnects from
the network, the timer is transferred to one of the remaining applications. The stopwatch needs
calbacks for two event types. the interaction event and atimer event. The interaction event is
generated when the user clicks with the left mouse button on an object.

Since each DIVE application kegpsits own copy of the world database and DIVE/Td
scripts are executed localy, there will - inevitably - be times when the contents of the local
databases differ. That is, you can't assume that anew vaue of a property is updated instantly
in dl connected databases. Therefore, you should take care when writing gpplications that
changes the contents of the database often. If you're changing the database faster than the
changes can be distributed you'll probably end up with a paradox situation sooner or later.
Thisisaproblem that's inherent in dl programs that use the peer-to-peer communication
mode and cannot redly be avoided. Therefore, if you need to make frequent changes to the
contents of the world database (or if you're on adow network), DIVE may not be the
appropriate platform to use.

A find word on properties. thereisa DIVE/Tcl command,

di ve_property_|ink,thalinksaglobd Td varidble to a property. When the
contents of the variable is changed, the property is updated automatically. Since the contents
of agloba Td varigble can differ between DIVE gpplications, you should use this command
with care. Also note that you need to create the link in al the connected gpplications.

"dive_send" vs. "dive_call"

When you invoke a number of consecutivedi ve_send commandsin abehaviour script,
thereis no guarantee that the function cals will be executed in the same order as they were
given. If you want to make sure that the calls arrive in the correct order, usedi ve_cal | .

Creating new objects on-the-fly

There are two different ways to create new objects from the behaviour code of an object. The
amplest way isto parseaURL by usng thedi ve_r eadURL commands. The drawback
of this method is that the specifications of the new object is defined by the contents of the file
that isread. The dterndiveistousedi ve_par se_st ri ng. Thefollowing code
fragment will create a new sphere with variable radius

16 (25) CID-60 ¢ A Practician's Guide to DIVE

proc add_new sphere {parent x y z} {
set string "object { view{ SPH $x $y $z } }"
set sphere [dive _parse_string $parent \
"x-worl d/ x-dive" "$string"]

}

Note, though, that the sphere isn't creasted immediately. Therefore, it isincorrect to write

proc add_new sphere {parent x y z} {
set string "object { view{ SPH $x $y $z } }"
set sphere [dive _parse_string $parent \
"x-worl d/ x-dive" "$string"]
di ve_abs_nove $sphere 1 0 0 WORLD C

}

The correct way to handle this Situation isto let the sphere creste an ENTI TY_NEWevent
calback for itself. Note though, that DIVE doesn't support thebegi n. t cl and

end. t cl tagswhen cregting new objectswith di ve_par se_st ri ng, soyou haveto
use aseparate Td file for the code. For example, if thefilef oo. t cl contains

on_new {t i o} {
di ve_abs _nmove [dive_self] 1 0 0 WORLD C
}
di ve_regi ster ENTITY_NEW EVENT NULL [dive_self] ""
on_new

you can say

proc add_new sphere {parent x y z} {
set tcl _code "inline.tcl \"foo.tcl\""
set string "object { view { SPH $x $y $z } $tcl _code
}ll
set sphere [dive _parse_string $parent \
"x-worl d/ x-dive" "$string"]

}

Level-of-detail

Be careful when you assign level-of-detail information to objects. For example, when the
following object isinserted into a DIVE world, only the first sub-object responds to mouse
clicks

CID-60 » A Practician's Guide to DIVE 17 (25)

obj ect {
| od {
range { 20 }
obj ect {
view {
RBOX v OOOv 111
}
}
obj ect {
vi ew {
RBOX v -1 -1 -1 v 00O
}

}

begin. tcl
proc on_click {event vid type origin src_id x vy z} {
puts "click"

}

di ve_regi ster | NTERACTI ON_SI GNAL DI VE | A SELECT \
[dive_self] "" on_click

end. tcl

}

Also notethat Tcl globa variables declared in one LOD sub-object isn't visble in other LOD
sub-objects.

Database navigation

When you navigate through the DIVE world database usng di ve_f i nd commands, you
should be aware that searching from the root node can give unexpected results. The reason is
that the user may create severad copies of the same object. If, for example, several copies of
an object named f 00 exigsin the database, it is unspecified which of them that is returned if
you start searching for f oo from the root. So avoid writing

18 (25) CID-60 « A Practician's Guide to DIVE

obj ect {
name "nmy_object”

obj ect {
name "sub_object 1"
begi n. tcl

proc ny_proc {} {
set root [dive_find_root]

set ny_object [dive_find sub_byname $root
"my_object"]
set sub_object2 [dive_ find_sub_bynanme \
$nmy_obj ect "sub_object2"]
}

end. tcl

}

obj ect {
name "sub_obj ect 2"
}
}

snceif there are severa objectsin the database named my _obj ect , the code may fal. A
more robust way to do thisis

obj ect {
name "ny_object”

obj ect {
nanme "sub_object 1"
begin. tcl

proc ny_proc {} {
set parent [dive_find_super [dive_self]]
set sub_object2 [dive find_sub_bynanme \
$parent "sub_object2"]
}

end. t cl

}

obj ect {
name "sub_obj ect 2"
}
}

CID-60 » A Practician's Guide to DIVE 19 (25)

Relationship between transformations and object info

When you gpply trandation or rotation to DIV E objects, the corresponding transformation
meatrices are multiplied together incrementaly and stored internaly in the object in two specid
matrices, atrandation matrix and a rotation matrix. There are two versons of each of these
meatrices.

Theworld coordinate system version that describes how points given in the object's
coordinate system are transformed into the world coordinate system.

Thelocal coordinate system version that describes how points given in the object's
coordinate system are transformed into its parent's coordinate system.

Thedi ve_enti ty_ i nf o command can be used to retreive these matrices from an
object. The trandation matrix isgiven asa (x y z) vaue (i.e. the trandation distance dong each

of the three coordinate axes). The rotation matrix is given as a 3x3 matrix, sored in column
order (Fortran order). For example, the lists

{a bc} {def} {ghi}

corresponds to the matrix

g
h

O T o
- D QO

There is no built-in way to obtain the inverse to the matrices. Caculating them is not difficult,
however. Cdculating the inverse of atrandation istrivia and snce rotation matrices are
orthogond, the inverse of arotation matrix isSmply its trangpose. A Td function,
unt r ansf or m tha cdculaesthe inverse of a DIVE transformation is listed in Appendix
A.

Note that thereis no scaing matrix. Thecommand di ve_scal e can be used to scae
an object, but only relaive to its current size. Absolute scaling of objectsis not supported, nor
is there away of obtaining the scding information of aDIVE object.

Adding objects to the visor

In DIVE version 3.3%, you can add objects to the visor of an actor. It isimportant to
remember, however, that once an object has been added to the visor, it only existsin the
DIVE application that added it to its visor. Changes made to visor objects are not distributed.
If you want to change a visor object that exists in aremote DIV E application, you have to add
afunction to the actor that is associated with the remote gpplication and usedi ve_cal | .

Keyboard repeat

When a DIVE application starts, the keyboard repest is deactivated. If the application
crashes, the keyboard repeat is sometimes not restored. When this happens, start vi shnu
with the tutorial world and exit immediately to restore the keyboard repest.

20 (25) CID-60 A Practician's Guide to DIVE

References

[1] ActiveWorlds. htt p: / / www. act i vewor | ds. conf

[2] Avatare, Frécon, Hagsand, Jé&-Aro, Simsarian, Stenius, Stahl. DIVE - The
Distributed Interactive Virtual Environment - DIVE Files Description for DIVE
version 3.3x.
http://ww. sics. se/dive/ manual /dive file format. htm

[3] Carlsson & Hagsand (1993) "DIVE - A Multi User Virtua Redlity System”. IEEE
VRAIS September 1993.

[4] Carlsson & Hagsand (1993) "DIVE - A Platform for Multi-User Virtua
Environments'. Computers and Graphics, 17(6), 1993.

[5] Frécon, Hagsand, Hansson, Stenius, Stahl, Wallberg. Dive/Tcl Reference Manual.
http://ww. sics.se/dive/ manual /tclref. htm

[6] Frécon & Hagsand (1997) Dive Applications.
http://ww. si cs. se/ di ve/ manual / application. ht m

[7] Frécon & Hagsand (1997) Dive Installation. Technica Memo.
http://ww. sics. se/dive/ manual /install.htm

[8] Hagsand (1996) "Interactive Multi-User VEsin the DIVE System”. |IEEE
Multimedia Magazine, 3(1), 1996.

[9] Osterhaut (1994) Tcl and the Tk Toolkit. Addison Wedey.

[10] Tcl/Tk digtribution and documentation. ht t p: / / www. scri pti cs. com

CID-60 » A Practician's Guide to DIVE 21 (25)

Appendix A - Source code

Stopwatch
#i ncl ude "dive.vh"
#define STOPWATCH HEIGHT 0.1

obj ect {
name "stopwatch"

The vi ew sub-objects define the appearance of the stopwatch

is the stopwatch text. It

is set to "00:00:00" initially. Note that the view is named.
This is because we want to change the text string later. The

v (STOPWATCH HEI GHT * -3.5) (-STOPWATCH_HEI GHT) -0.01
v (STOPWATCH HEI GHT * 3.5) (1.5 * STOPWATCH_HEI GHT) -0.

/*
* in the world. The first sub-object
*
*
* second sub-object is the stopwatch case
*/
obj ect {
material "white"
view {
name "text"
CTEXT STOPWATCH_HEI GHT
"00:00: 00" "default"
}
}
obj ect {
mat erial "red"
view {
RBOX
}
}

/* Here is the behaviour for the stopwatch: */

begin.tc

/* This function updates the tine display on the stopwatch. */

proc display tinme {hrs mn sec} {

if {$hrs < 10} {
set hrs "0$hrs"

}

if {$mn < 10} {
set mn "0%$m n"

}

if {$sec < 10} {
set sec "0%sec"

}

22 (25) CID-60 A Practician's Guide to DIVE

1

set view [dive_find_sub_byname [dive_self] "text"]
di ve_text $view "$hrs: $nmi n: $sec"

}
/[* This function renoves initial zeros in nunbers. Exanple:
* 08 -> 8. It is used to convert the output fromdive_date. If
* the initial zero isn't renoved, 01-09 are interpreted as
* octal nunbers and syntax errors are genereted whenever Tcl sees
* 08 and 09 are seen (since they are invalid octal numbers).
*

/

proc stripzeros {value} {
regsub "0+(.+) $value \\1 retva
return $retva

}

/* ADVE timer is set up to invoke this function every 100
* mlliseconds if the stopwatch is running. If the system
* time has changed since the last time the function was
* invoked, the stopwatch tinme is updated.

*/

proc on_timer {} {
gl obal | ast_sec

set sw_hrs [dive_property get [dive_self] "hrs"]
set sw_min [dive_property_get [dive_self] "mn"]
set sw_sec [dive_property get [dive_self] "sec"]

set sec [stripzeros [dive_date %8]]

if {$sec != $last_sec} {
set sw sec [expr $sw sec + 1]
if {$sw sec == 60} {
set sw sec O
set sw.mn [expr $sw mn + 1]
}
if {$sw . mn == 60} {
set sw.min O
set sw_hrs [expr $sw hrs + 1]
}
display time $sw hrs $sw nmin $sw sec

}

di ve_property put [dive_self] "hrs" $sw hrs
di ve_property put [dive_self] "mn" $sw mn

di ve_property put [dive_self] "sec" $sw sec
set |ast_sec $sec
}
/* This function is the callback for the interaction event, i.e.
* the event that is generated when the user clicks on the
* stopwatch. It toggles the "active" property. If the
* stopwatch is started, a timer is registered, otherw se
* the timer is deregistered.
*

/

CID-60 » A Practician's Guide to DIVE 23 (25)

proc on_click {event vid type origin src_id x y z} {
gl obal [l ast_sec

set active [dive_property_get [dive_self] "active"]
set active [expr 1 - S$active]
di ve_property put [dive_self] "active" $active

if {$active == 1} {
di ve_property _put [dive_self] "hrs" O
di ve_property put [dive_self] "mn" O
di ve_property _put [dive_self] "sec" O
set |last_sec [stripzeros [dive_date %§]]
dive_tinmer [dive_self] 100 "on_timer"
} else {
dive_tinme_deregister [dive_self] "on_tinmer"

}
}
/* This function is the callback for the ENTITY_NEWevent. It
* creates the properties needed for the stopwatch. It also
* registers a callback for interaction events, i.e. when the
* user clicks on the stopwatch
*

/

proc on_new {type id origin} {
di ve_property create [dive_self] "active" string O
di ve_property create [dive_self] "hrs" string O
di ve_property create [dive_self] "mn" string O
di ve_property create [dive_self] "sec" string O
di ve_regi ster | NTERACTI ON_SI GNAL DI VE | A SELECT [dive_sel f] \
"" on_click

~
b R S I S T T .

~

This code is invoked by all DIVE applications that |oads the
st opwat ch. We cannot create properties here since that would
result in multiple copies of the same property. The correct
way to solve this problemis to register a callback procedure
for the ENTI TY_NEW event and create the properties there

The ENTI TY_NEW event is generated when an object has been
created. When the object has been created it is distributed to
all connected applications. The global Tcl variable "last_sec”
nmust be created here since it has to exist in the interpreter
of all distributed copies of the stopwatch object.

gl obal I ast_sec
set last_sec O

di ve_regi ster ENTI TY_NEW EVENT NULL [dive_self] "" on_new

end.tc

24 (25) CID-60 « A Practician's Guide to DIVE

Untransform

H O OH OH OH OH H H O

the | ocal

The result
untransform x,

unt ransf orm

proc untransform{entity x y z} {
gl obal untransform x
gl obal untransformy
gl obal untransformz

dive_entity_info $entity info

scan $info(TO) "% 9% %" tx ty

set
set
set
set
set
set
set
set
set

set
set
set

set
set
set

set
set
set

[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i
[lindex [lindex $i

>oQ ™t o0 o O T 9

u_x [expr ($a * $x)
uy [expr ($d * $x)
u_z [expr ($g * $x)

nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)
nf o(RO)

+ ($b *
+ ($e *
+ ($h *

Transforma point fromthe world coordinate systeminto
coordi nate system of an entity.

is stored in the global varaibles
untransformy and untransform z.

tz

0] 0]
0] 1]
0] 2]
1] 0]
1] 1]
1] 2]
2] 0]
2] 1]
2] 2]

$y) + ($c * $2)]
$y) + ($f * $2)]
$y) + ($i * $2)]

tmp_x [expr ($a * $tx) + ($b * $ty) + ($c * $tz)]
tnp_y [expr ($d * $tx) + ($e * $ty) + ($f * $tz)]
tnp_z [expr ($g * $tx) + ($h * $ty) + ($i * $tz)]

untransformx [expr $u_x -
untransformy [expr $u y - $tnp_y]
untransformz [expr $u_z -

$t np_x]

$t np_2z]

CID-60 ¢ A Practician's Guide to DIVE

25 (25)

